【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

【答案】(1)證明見解析;(2)∠FAE=135°;(3)證明見解析.

【解析】

(1)根據(jù)已知條件易證∠BAC=∠DAE,再由AB=AD,AE=AC,根據(jù)SAS即可證得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根據(jù)全等三角形的性質(zhì)可得∠BCA=∠E=45°,再求得∠CAF=45°,∠FAE=∠FAC+∠CAE即可得∠FAE的度數(shù);(3)延長BFG,使得FG=FB,易證△AFB≌△AFG,根據(jù)全等三角形的性質(zhì)可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS證得△CGA≌△CDA,由全等三角形的性質(zhì)可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.

(1)∵∠BAD=∠CAE=90°,

∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,

∴∠BAC=∠DAE,

△BAC△DAE中,

,

∴△BAC≌△DAE(SAS);

(2)∵∠CAE=90°,AC=AE,

∴∠E=45°,

由(1)知△BAC≌△DAE,

∴∠BCA=∠E=45°,

∵AF⊥BC,

∴∠CFA=90°,

∴∠CAF=45°,

∴∠FAE=∠FAC+∠CAE=45°+90°=135°;

(3)延長BFG,使得FG=FB,

∵AF⊥BG,

∴∠AFG=∠AFB=90°,

△AFB△AFG中,

∴△AFB≌△AFG(SAS),

∴AB=AG,∠ABF=∠G,

∵△BAC≌△DAE,

∴AB=AD,∠CBA=∠EDA,CB=ED,

∴AG=AD,∠ABF=∠CDA,

∴∠G=∠CDA,

△CGA△CDA中,

,

∴△CGA≌△CDA,

∴CG=CD,

∵CG=CB+BF+FG=CB+2BF=DE+2BF,

∴CD=2BF+DE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016327麗水半程馬拉松競賽在蓮都舉行,某運動員從起點萬地廣場西門出發(fā),途經(jīng)紫金大橋,沿比賽路線跑回終點萬地廣場西門.設(shè)該運動員離開起點的路程S(千米)與跑步時間t(分鐘)之間的函數(shù)關(guān)系如圖所示,其中從起點到紫金大橋的平均速度是0.3千米/分,用時35分鐘,根據(jù)圖像提供的信息,解答下列問題:

(1)求圖中a的值;

(2)組委會在距離起點2.1千米處設(shè)立一個拍攝點C,該運動員從第一次過C點到第二次過C點所用的時間為68分鐘.

①求AB所在直線的函數(shù)解析式;

②該運動員跑完賽程用時多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點E,DF⊥AC于點F.

(1)求證:AB=AC;
(2)若AD=2 ,∠DAC=30°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A的坐標(biāo)為(﹣2,0),直線y=﹣ x+3與x軸、y軸分別交于點B和點C,連接AC,頂點為D的拋物線y=ax2+bx+c過A、B、C三點.

(1)請直接寫出B、C兩點的坐標(biāo),拋物線的解析式及頂點D的坐標(biāo);
(2)設(shè)拋物線的對稱軸DE交線段BC于點E,P是第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標(biāo);
(3)設(shè)點M是線段BC上的一動點,過點M作MN∥AB,交AC于點N,點Q從點B出發(fā),以每秒1個單位長度的速度沿線段BA向點A運動,運動時間為t(秒),當(dāng)t(秒)為何值時,存在△QMN為等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中有一條美麗可愛的小金魚.

(1)若方格的邊長為1,則小魚的面積為

(2)畫出小魚向左平移3格后的圖形(不要求寫作圖步驟和過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:

解方程=1

老師說:這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進(jìn)行了解答,小明同學(xué)的解題過程如下:

解:方程兩邊同時乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括號,得:4﹣6x﹣3x+15=1……………③

移項,得:﹣6x﹣3x=1﹣4﹣15…………④

合并同類項,得﹣9x=﹣18……………⑤

系數(shù)化1,得:x=2………………⑥

上述小明的解題過程從第   步開始出現(xiàn)錯誤,錯誤的原因是   

請幫小明改正錯誤,寫出完整的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B在線段EF上,點M、N分別是線段EABF的中點,EAABBF=1:2:3,若MN=8cm,則線段EF的長是( 。

A. 10 cm B. 11 cm C. 12 cm D. 13 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫出∠DAE,B,C的數(shù)量關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊答案