【題目】如圖所示,已知是等腰底邊上的高,且上有一點,滿足,則的值是(

A. B. C. D.

【答案】B

【解析】

E點作CD的平行線交ADF,AE=2a,CE=3atanC=EFDF分別可用a的代數(shù)式來表達,即可得出tanADE的值

E點作CD的平行線交ADF.如圖

AD是等腰△ABC底邊上的高,tanB=,EFADtanC=tanB=

AE=2a

AECE=23,CE=3aAC=5a

tanC=,sinC=,cosC=

在直角△ADC,AD=ACsinC=5a×=3a

在直角△AFE,AF=AE×sinAEF=AE×sinC=2a×=

EF=AE×cosAEF=AE×cosC=2a×=

在直角△DFE,tanADE=

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人做某種機械零件,已知每小時甲比乙少做8個,甲做120個所用的時間與乙做150個所用的時間相等.

1)甲、乙二人每小時各做零件多少個?

2)甲做幾小時與乙做4小時所做機械零件數(shù)相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從兩地同時出發(fā),沿同一公路相向而行,開往兩地.已知甲車每小時比乙車每小時多走,且甲車行駛所用的時間與乙車行駛所用的時間相同.

1)求甲、乙兩車的速度各是多少?

2)實際上,甲車出發(fā)后,在途中因車輛故障耽擱了20分鐘,但仍比乙車提前1小時到達目的地.兩地間的路程是多少

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABD≌△CDB,且AB,CD是對應邊.下面四個結(jié)論中不正確的是( )

A. ABD和△CDB的面積相等B. ABD和△CDB的周長相等

C. A+ABD=C+CBDD. ADBC,且AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】酒泉市教育局計劃對全市八年級學生學習情況進行調(diào)查,隨機從全市抽取城市和農(nóng)村兩組學生的期中數(shù)學成績,每組10人進行對比分析.繪制統(tǒng)計圖如下.根據(jù)圖中信息,完成下列問題.

1)完成下表;

平均數(shù)

中位數(shù)

眾數(shù)

方差

城市

農(nóng)村

2)依據(jù)上表的信息談談你的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天津北寧公園內(nèi)的致遠塔,塔高九層,塔內(nèi)四周墻壁上鑲鉗著歷史題材為內(nèi)容的瓷板油彩畫或青石刻浮雕,疊雙向盤旋樓梯或電梯可達九層,津門美景盡收眼底,是我國目前最高的寶塔.某校數(shù)學情趣小組實地測量了致遠塔的高度,如圖,在處測得塔尖的仰角為,再沿方向前進到達處,測得塔尖的仰角為,求塔高(精確到,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設他們同時出發(fā),運動的時間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運動時間之間的函數(shù)關(guān)系圖象

1)李越騎車的速度為 /分鐘;F點的坐標為 ;

2)求李越從乙地騎往甲地時, 之間的函數(shù)表達式;

3)求王明從甲地到乙地時, 之間的函數(shù)表達式;

4)求李越與王明第二次相遇時的值.

查看答案和解析>>

同步練習冊答案