如圖,將△ABC中放在平面直角坐標(biāo)系中,使B,C在x軸正半軸上,若AB=AC,且A點(diǎn)坐標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(1,0)。
(1)求邊AC所在直線的解析式;
(2)若坐標(biāo)平面內(nèi)存在三角形與△ABC全等且有一條公共邊,請(qǐng)寫出這些三角形未知頂點(diǎn)的坐標(biāo)。
解:(1)過點(diǎn)A作軸于點(diǎn)D,則BD=DC,可知C(5,0),從而求得邊AC所在直線的解析式為
(2)由軸于點(diǎn)D,且BD=DC=AD,判斷為等腰直角三角形
所以符合條件的頂點(diǎn)坐標(biāo)為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)操作與探索:如圖,在△ABC中,AC=BC=2,∠C=90°,將一塊三角板的直角頂點(diǎn)放在斜邊的中點(diǎn)P處,繞點(diǎn)P旋轉(zhuǎn).設(shè)三角板的直角邊PM交線段CB于E點(diǎn),當(dāng)CE=0,即E點(diǎn)和C點(diǎn)重合時(shí),有PE=PB,△PBE為等腰三角形,此外,當(dāng)CE等于
 
時(shí),△PBE為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=Rt∠,AC=BC=2,E,F(xiàn)分別為AC,AB的中點(diǎn),連接EF.現(xiàn)將一把直角尺放在給出的圖形上,使直角頂點(diǎn)P在線段EF(包括端點(diǎn))上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)C,另一邊與BF相交于G,連接AP.
(1)求證:PC=PA=PG;
(2)設(shè)EP=x,四邊形BCPG的面積為y,求y與x之間的函數(shù)解析式,現(xiàn)有三個(gè)數(shù)
1
2
,
9
8
,
7
4
試通過計(jì)算說明哪幾個(gè)數(shù)符合y值的要求,并求出符合y值時(shí)的x的值;
(3)當(dāng)直角頂點(diǎn)P滑動(dòng)到點(diǎn)F時(shí),再將直角尺繞點(diǎn)F順時(shí)針旋轉(zhuǎn),兩直角邊分別交AC,BC于點(diǎn)M,N,連接MN.當(dāng)旋轉(zhuǎn)到使MN=
10
7
時(shí),求△APM的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖,將△ABC放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(Ⅰ)△ABC的面積等于
6
6
;
(Ⅱ)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡(jiǎn)要說明畫圖方法(不要求證明)
取格點(diǎn)P,連接PC,過點(diǎn)A畫PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過點(diǎn)D畫CB的平行線,與AB相交得點(diǎn)E,分別過點(diǎn)D、E畫PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求
取格點(diǎn)P,連接PC,過點(diǎn)A畫PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過點(diǎn)D畫CB的平行線,與AB相交得點(diǎn)E,分別過點(diǎn)D、E畫PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,Rt△ABC中,∠ACB=90°,AC=BC,將直角三角板中45°角的頂點(diǎn)放在點(diǎn)C處,并將三角板繞點(diǎn)C旋轉(zhuǎn),三角板的兩邊分別交AB邊于D、E兩點(diǎn)(點(diǎn)D在點(diǎn)E的左側(cè),并且精英家教網(wǎng)點(diǎn)D不與點(diǎn)A重合,點(diǎn)E不與點(diǎn)B重合),設(shè)AD=m,DE=x,BE=n.
(1)判斷以m、x、n為三邊長組成的三角形的形狀,并說明理由;
(2)當(dāng)三角板旋轉(zhuǎn)時(shí),找出AD、DE、BE三條線段中始終最長的線段,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案