【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動(dòng)點(diǎn)C在以半徑為3的⊙O上,連接OC,過(guò)O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針?lè)较蚺帕校B接AB.
(1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為;
(2)連接AC,BC,當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)到什么位置時(shí),△ABC的面積最大?并求出△ABC的面積的最大值;
(3)連接AD,當(dāng)OC∥AD時(shí),①求出點(diǎn)C的坐標(biāo);②直線BC是否為⊙O的切線?請(qǐng)作出判斷,并說(shuō)明理由.

【答案】
(1)45°或135°
(2)解:∵△OAB為等腰直角三角形,

∴AB= OA=6 ,

∴當(dāng)點(diǎn)C到AB的距離最大時(shí),△ABC的面積最大,

過(guò)O點(diǎn)作OE⊥AB于E,OE的反向延長(zhǎng)線交⊙O于C,如圖,

此時(shí)C點(diǎn)到AB的距離的最大值為CE的長(zhǎng),

∴OE= AB=3 ,

∴CE=OC+OE=3+3 ,

△ABC的面積= CEAB= ×(3+3 )×6 =9 +18.

∴當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)到第三象限的角平分線與圓的交點(diǎn)位置時(shí),

△ABC的面積最大,最大值為9 +18


(3)解:①如圖,過(guò)C點(diǎn)作CF⊥x軸于F,

∵OC∥AD,

∴∠COF=∠DAO,

又∵∠ADO=∠CFO=90°

∴Rt△OCF∽R(shí)t△AOD,

= ,即 = ,解得CF=

在Rt△OCF中,OF= = ,

∴C點(diǎn)坐標(biāo)為(﹣ , );

故所求點(diǎn)C的坐標(biāo)為(﹣ , ),

當(dāng)C點(diǎn)在第一象限時(shí),同理可得C點(diǎn)的坐標(biāo)為( , ),

綜上可得,點(diǎn)C的坐標(biāo)為(﹣ , )或( , ).

②當(dāng)C點(diǎn)坐標(biāo)為(﹣ )或( )時(shí),直線BC是⊙O的切線.理由如下:

在Rt△OCF中,OC=3,CF= ,

∴∠COF=30°,

∴∠OAD=30°,

∴∠BOC=60°,∠AOD=60°,

∵在△BOC和△AOD中

,

∴△BOC≌△AOD(SAS),

∴∠BCO=∠ADO=90°,

∴OC⊥BC,

∴直線BC為⊙O的切線;

當(dāng)C點(diǎn)坐標(biāo)為(﹣ , )或( )時(shí),顯然直線BC與⊙O相切.

綜上可得:C點(diǎn)坐標(biāo)為( )或(﹣ )時(shí),顯然直線BC與⊙O相切.


【解析】解:(1)∵點(diǎn)A(6,0),點(diǎn)B(0,6), ∴OA=OB=6,
∴△OAB為等腰直角三角形,
∴∠OBA=45°,
∵OC∥AB,
∴當(dāng)C點(diǎn)在y軸左側(cè)時(shí),∠BOC=∠OBA=45°;
當(dāng)C點(diǎn)在y軸右側(cè)時(shí),∠BOC=90°+∠OBA=135°;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=ax+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,太陽(yáng)光線與地面成60°的角,照在地面的一只排球上,排球在地面的投影長(zhǎng)是14 ,則排球的直徑是(
A.7cm
B.14cm
C.21cm
D.21 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家客廳里裝有一種三位單極開(kāi)關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小明按下任意一個(gè)開(kāi)關(guān)均可打開(kāi)對(duì)應(yīng)的一盞電燈,既可三盞、兩盞齊開(kāi),也可分別單盞開(kāi).因剛搬進(jìn)新房不久,不熟悉情況.
(1)若小明任意按下一個(gè)開(kāi)關(guān),則下列說(shuō)法正確的是(
A.小明打開(kāi)的一定是樓梯燈;
B.小明打開(kāi)的可能是臥室燈;
C.小明打開(kāi)的不可能是客廳燈;
D.小明打開(kāi)走廊燈的概率是
(2)若任意按下一個(gè)開(kāi)關(guān)后,再按下另兩個(gè)開(kāi)關(guān)中的一個(gè),則正好客廳燈和走廊燈同時(shí)亮的概率是多少?請(qǐng)用樹(shù)狀圖法或列表法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|1﹣2sin45°|﹣ +( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年以來(lái),國(guó)務(wù)院連續(xù)發(fā)布了《關(guān)于加快構(gòu)建大眾創(chuàng)業(yè)萬(wàn)眾創(chuàng)新支撐平臺(tái)的指導(dǎo)意見(jiàn)》等一系列支持性政策,各地政府高度重視、積極響應(yīng),中國(guó)掀起了大眾創(chuàng)業(yè)萬(wàn)眾創(chuàng)新的新浪潮.某創(chuàng)新公司生產(chǎn)營(yíng)銷A、B兩種新產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息: 信息1:銷售A種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系y=ax2+bx,當(dāng)x=1時(shí),y=7;當(dāng)x=2時(shí),y=12.
信息2:銷售B種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系y=2x.
根據(jù)以上信息,解答下列問(wèn)題:
(1)求a,b的值;
(2)該公司準(zhǔn)備生產(chǎn)營(yíng)銷A、B兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)生產(chǎn)方案,使銷售A、B兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:一輛汽車在一個(gè)十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時(shí)汽車車頭與斑馬線的距離x是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案