【題目】如圖,在平面直角坐標系中,⊙C與y軸相切,且C點坐標為(2,0),直線l過點A(﹣2,0),與⊙C相切于點D,求直線l的解析式.
【答案】解:如圖所示,當直線l在x軸的上方時,
連接CD,
∵直線l為⊙C的切線,
∴CD⊥AD.
∵C點坐標為(2,0),
∴OC=2,即⊙C的半徑為2,
∴CD=OC=2.
又∵點A的坐標為(﹣2,0),
∴AC=4,
∴AC=2CD,
∴∠CAD=30°,
在Rt△AOB中,OB=OAtan30°= ,
即B(0, ),
設直線l解析式為:y=kx+b(k≠0),則 ,
解得k= ,b= ,
∴直線l的函數解析式為y= x+ .
同理可得,當直線l在x軸的下方時,直線l的函數解析式為y=﹣ x﹣ .
故直線l的函數解析式為y= x+ 或y=﹣ x﹣ .
【解析】連接CD,由于直線l為⊙C的切線,故CD⊥AD.結合點與坐標的性質求得點B的坐標,設直線l的函數解析式為y=kx+b,把A,B兩點的坐標代入即可求出未知數的值從而求出其解析式.
【考點精析】利用確定一次函數的表達式和切線的性質定理對題目進行判斷即可得到答案,需要熟知確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】(6分)下面是小馬虎解的一道題
題目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度數.
解:根據題意可畫出圖,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老師,會判小馬虎滿分嗎?若會,說明理由.若不會,請將小馬虎的的錯誤指出,并給出你認為正確的解法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為圓內接四邊形,AB是直徑,MN切⊙O于C點,∠BCM=38°,那么∠ABC的度數是( )
A.38°
B.52°
C.68°
D.42°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場為了促銷,推出兩種促銷方式:
方式一:所有商品打7.5折銷售:
方式二:一次購物滿200元送60元現金.
(1)楊老師要購買標價為628元和788元的商品各一件,現有四種購買方案:
方案一:628元和788元的商品均按促銷方式①購買;
方案二:628元的商品按促銷方式①購買,788元的商品按促銷方式②購買;
方案三:628元的商品按促銷方式②購買,788元的商品按促銷方式①購買;
方案四:628元和788元的商品均按促銷方式②購買.
你給楊老師提出的最合理購買方案是 .
(2)通過計算下表中標價在600元到800元之間商品的付款金額,你總結出商品的購買規(guī)律是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】陳老師要為他家的長方形餐廳(如圖1)選擇一張餐桌,并且想按如下要求擺放:餐桌一側靠墻,靠墻對面的桌邊留出寬度不小于80 cm的通道,另兩邊各留出寬度不小于60 cm的通道.那么在圖2的四張餐桌中,其規(guī)格符合要求的餐桌編號是________.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長.
(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個自然數的立方,可以分裂成若干個連續(xù)奇數的和。例如:和分別可以按如圖所示的方式“分裂”成2個、3個和4個連續(xù)奇數的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進行“分裂”,則“分裂”出的奇數中,最大的奇數是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明從如圖所示的二次函數y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①abc>0;②a﹣b+c<0;③b+2c>0; ④a﹣2b+4c>0;⑤2a=3b
你認為其中正確信息的個數有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知 A (-4,n), B (2,-4)是一次函數 y=kx+b的圖象和反比例函數的圖象的兩個交點.
(1)求反比例函數和一次函數的關系式;
(2)求直線 AB 與 x 軸的交點 C 的坐標及△ AOB 的面積;
(3)求方程 kx+b-=0的解(請直接寫出答案);
(4)求不等式 kx+b-<0的解集(請直接寫出答案).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com