【題目】如圖,將ABCD沿對角線AC折疊,使點B落在點B'處.若∠1=∠2=44°,則∠B的大小為度.

【答案】114
【解析】解:在ABCD中,AB∥CD,

∴∠BAB′=∠1=44°,

ABCD沿對角線AC折疊,使點B落在點B'處,

∴∠BAC=∠B′AC,

∴∠BAC= ∠BAB′= ×44°=22°,

在△ABC中,∠B=180°﹣∠BAC﹣∠2=180°﹣22°﹣44°=114°.

所以答案是:114.

【考點精析】本題主要考查了平行線的性質(zhì)和三角形的內(nèi)角和外角的相關知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點.若四邊形EFGH為菱形,則對角線AC、BD應滿足條件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加強中小學生安全和禁毒教育,某校組織了防溺水、交通安全、禁毒知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.求足球和籃球的單價各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(a,1)、B(1,b)的坐標滿足:.

(1)直接寫出點A、B的坐標;

(2)如圖,過點E(m,0)(m>1)x軸的垂線l1,A關于l1的對稱點為A’(2m-1,1),BA’x軸于點F,當E點在x軸上運動時,求EF的長度;

(3)如圖,把點A向上平移2個單位到點C,過點Cy軸的垂線l2,D(n,c)在直線l2(不和C重合),若∠CDA=,連接OA、DA,AOx=45°,若滿足∠DAO=225°,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,將△ABC在平面內(nèi)繞點A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,連結CC′,使CC′∥AB.若∠CAB=65°,則旋轉(zhuǎn)的角度為( )

A.65°
B.50°
C.40°
D.35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1

2)如圖,將矩形ABCD沿GH折疊,點C落在點Q處,點D落在AB邊上的點E處,若∠AGE=32°,求∠GHC度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙兩個空調(diào)安裝隊分別為A、B兩個公司安裝空調(diào),甲安裝隊為A公司安裝66臺空調(diào),乙安裝隊為B公司安裝60臺空調(diào),甲、乙兩隊安裝空調(diào)所用的總時間相同.已知甲隊比乙隊平均每天多安裝2臺空調(diào),求甲、乙兩個安裝隊平均每天各安裝空調(diào)的臺數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC=6,∠B=60°,∠D=90°,連結AC.動點P從點B出發(fā),沿BC以每秒1個單位的速度向終點C運動(點P不與點B、C重合).過點P作PQ⊥BC交AB或AC于點Q,以PQ為斜邊作Rt△PQR,使PR∥AB.設點P的運動時間為t秒.

(1)當點Q在線段AB上時,求線段PQ的長.(用含t的代數(shù)式表示)
(2)當點R落在線段AC上時,求t的值.
(3)設△PQR與△ABC重疊部分圖形的面積為S平方單位,求S與t之間的函數(shù)關系式.
(4)當點R到C、D兩點的距離相等時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),甲車勻速前往B地,到達B地立即以另一速度按原路勻速返回到A地;乙車勻速前往A地,設甲、乙兩車距A地的路程為y(千米),甲車行駛的時間為x(時),y與x之間的函數(shù)圖象如圖所示.

(1)求甲車從A地到達B地的行駛時間;
(2)求甲車返回時y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)求乙車到達A地時甲車距A地的路程.

查看答案和解析>>

同步練習冊答案