若△ABC中∠A=60°,∠B的度數(shù)為x,∠C的度數(shù)為y,試寫出y與x之間的函數(shù)關系式,并畫出圖象。

解: ()       4′
           8′

解析試題分析:△ABC中∠A=60°,∠B的度數(shù)為x,∠C的度數(shù)為y,則y=180°-60°-x,整理得:
y=120°-x(),將y=0和x=0兩個值代入解析式,求出兩點坐標分別為(0,120)(120,0)畫出圖像。
考點:一次函數(shù)
點評:本題難度較低,主要考查學生根據(jù)實際問題求解析式并作圖的掌握。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(11·臺州)(12分)如圖1,AD和AE分別是△ABC的BC邊上的高和中線,

點D是垂足,點E是BC的中點,規(guī)定:.特別地,當點D、E重合時,規(guī)定:λA

=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖2,在△ABC中,∠C=90º,∠A=30º,求λA、λC;

(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;

(3)判斷下列三個命題的真假(真命題打“P”,假命題打“×”):

①若△ABC中λA<1,則△ABC為銳角三角形;【    】

②若△ABC中λA=1,則△ABC為銳角三角形;【    】

③若△ABC中λA>1,則△ABC為銳角三角形.【    】

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖南郴州卷)數(shù)學 題型:解答題

(11·臺州)(12分)如圖1,AD和AE分別是△ABC的BC邊上的高和中線,
點D是垂足,點E是BC的中點,規(guī)定:.特別地,當點D、E重合時,規(guī)定:λA
=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖2,在△ABC中,∠C=90º,∠A=30º,求λA、λC;
(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;
(3)判斷下列三個命題的真假(真命題打“P”,假命題打“×”):
①若△ABC中λA<1,則△ABC為銳角三角形;【   】
②若△ABC中λA=1,則△ABC為銳角三角形;【   】
③若△ABC中λA>1,則△ABC為銳角三角形.【   】

查看答案和解析>>

科目:初中數(shù)學 來源:2013學年安徽省桐城市八年級上學期階段檢測(一)數(shù)學試卷(解析版) 題型:解答題

若△ABC中∠A=60°,∠B的度數(shù)為x,∠C的度數(shù)為y,試寫出y與x之間的函數(shù)關系式,并畫出圖象。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖南郴州卷)數(shù)學 題型:解答題

(11·臺州)(12分)如圖1,AD和AE分別是△ABC的BC邊上的高和中線,

點D是垂足,點E是BC的中點,規(guī)定:.特別地,當點D、E重合時,規(guī)定:λA

=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖2,在△ABC中,∠C=90º,∠A=30º,求λA、λC;

(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;

(3)判斷下列三個命題的真假(真命題打“P”,假命題打“×”):

①若△ABC中λA<1,則△ABC為銳角三角形;【    】

②若△ABC中λA=1,則△ABC為銳角三角形;【    】

③若△ABC中λA>1,則△ABC為銳角三角形.【    】

 

查看答案和解析>>

同步練習冊答案