【題目】知識儲備
如圖①,點E、F分別是y=3和y=﹣1上的動點,則EF的最小值是 ;
方法儲備
直角坐標系的建立,在代數(shù)和幾何之間架起了一座橋梁,用代數(shù)的方法解決幾何問題:某數(shù)學小組在自主學習時了解了三角形的中位線及相關的定理,在學習了《坐標與位置)后,該小組同學深入思考,利用中點坐標公式,給出了三角形中位線定理的一種證明方法.如圖②,在△ABC中,點D,E分別是AB,AC邊的中點,DE稱為△ABC的中位線,則DE∥BC且DE=BC.該數(shù)學小組建立如圖③的直角坐標系,設點A(a,b),點C (0,c)(c>0).請你利用該數(shù)學學習小組的思路證明DE∥BC且DE=BC.(提示:中點坐標公式,A(x1,y1),B(x2,y2),則A,B中點坐標為(,).
綜合應用
結合上述知識和方法解決問題,如圖④,在△ABC中,∠ACB=90°,AC=3,BC=6,延長AC至點 D.DE⊥AD,連接EC并延長交AB邊于點F.若2CD+DE=6,則EF是否存在最小值,若存在,求出最小值;若不存在,請說明理由.
【答案】知識儲備: 4;方法儲備:見解析;綜合應用:EF存在最小值,最小值為.
【解析】
知識儲備:根據(jù)垂線段最短,平行線之間的距離解決問題即可.
方法儲備:如圖③中,設,.利用中點坐標公式求解即可.
綜合運用:建立如圖平面直角坐標系,設,則.求出點的運動軌跡,轉化為知識儲備的類型即可解決問題.
解:知識儲備:如圖①,點、分別是和上的動點,則的最小值是,
故答案為4;
方法儲備:如圖③中,設,.
,,
,,,,
,
,
,
;
綜合應用:建立如圖平面直角坐標系,設,則.
,
,
點的運動軌跡是直線,設這條直線與軸交于,由軸交于.
,,
直線的解析式為,
,
根據(jù)垂線段最短可知,當時,長最小,
作于,交于.
,,
,
,
直線與直線關于原點對稱,
根據(jù)對稱性可知,
的最小值.
科目:初中數(shù)學 來源: 題型:
【題目】汽車產業(yè)的發(fā)展,有效促進我國現(xiàn)代化建設.某汽車銷售公司2016年盈利1500萬元,到2018年盈利2160萬元,且從2016年到2018年,每年盈利的年增長率相同.
(1)求每年盈利的年增長率;
(2)若該公司盈利的年增長率繼續(xù)保持不變,那么2019年該公司盈利能否達到2500萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在中,,,線段的垂直平分線交于點,交于點,則以下結論:①是等腰三角形;②是的角平分線;③的周長;④正確的有( )
A.①②B.①③C.③④D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,命題:①若∠B=∠C-∠A,則△ABC是直角三角形.②若a2=(b+c)(b-c),則△ABC是直角三角形.③若∠A∶∠B∶∠C=3∶4∶5,則△ABC是直角三角形.④若a∶b∶c=5∶4∶3.則△ABC是直角三角形. 其中假命題個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側,AB∥CD,且,若 AB=8cm,則 CD 的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F分別在AB,BC上,且AE=BF.
(1)試探索線段AF,DE的數(shù)量關系,寫出你的結論并說明理由;
(2)連接EF,DF,分別取AE,EF,FD,DA的中點H,I,J,K,則四邊形HIJK是什么特殊四邊形?請在圖2中補全圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M(4,0),以點M為圓心、2為半徑的圓與x軸交于點A、B.已知拋物線 過點A和B,與y軸交于點C.
(1)求點C的坐標,并畫出拋物線的大致圖象.
(2)點Q(8,m)在拋物線上,點P為此拋物線對稱軸上一個動點,求PQ+PB的最小值.
(3)CE是過點C的⊙M的切線,點E是切點,求OE所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們約定:對角線互相垂直的凸四邊形叫做“正垂形”.
(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有 ;
②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形 “正垂形”.(填“是”或“不是”)
(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當≤OE≤時,求AC2+BD2的取值范圍;
(3)如圖2,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(點A在點C的左側),B是拋物線與y軸的交點,點D的坐標為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4.試直接寫出滿足下列三個條件的拋物線的解析式;
①; ②; ③“正垂形”ABCD的周長為12.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com