某職業(yè)學(xué)校三名學(xué)生到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話。
A:如果以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.
B:如果以13元/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.
C:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)為何值時(shí),該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)達(dá)到600元?【利潤(rùn)=銷(xiāo)售量×(銷(xiāo)售單價(jià)-進(jìn)價(jià))】
(3)一段時(shí)間后,發(fā)現(xiàn)這種水果每天的銷(xiāo)售量均不低于225千克.則此時(shí)該超市銷(xiāo)售這種水果每天獲取的最大利潤(rùn)是多少?

(1)y=-50x+800(x>0);(2)10或14元;(3)787.5元.

解析試題分析:(1)以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克;以13元/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.就相當(dāng)于直線過(guò)點(diǎn)(10,300),(13,150),然后列方程組解答即可.
(2)根據(jù)利潤(rùn)=銷(xiāo)售量×(銷(xiāo)售單價(jià)-進(jìn)價(jià))寫(xiě)出解析式,W=(-50x+800)(x-8)=600求出即可;
(3)由二次函數(shù)的性質(zhì)以及利用配方法求最大值,自變量的取值范圍解答這一問(wèn)題.
試題解析:(1)當(dāng)銷(xiāo)售單價(jià)為13元/千克時(shí),銷(xiāo)售量為:千克
設(shè)y與x的函數(shù)關(guān)系式為:y=kx+b(k≠0)
把(10,300),(13,150)分別代入得:
,
解得,
故y與x的函數(shù)關(guān)系式為:y=-50x+800(x>0)
(2)設(shè)每天水果的利潤(rùn)w元,
∵利潤(rùn)=銷(xiāo)售量×(銷(xiāo)售單價(jià)-進(jìn)價(jià))
∴W=(-50x+800)(x-8)=600
0=-50(x-12)2+200
解得:x1=10,x2=14.
∴當(dāng)銷(xiāo)售單價(jià)為10或14元時(shí),每天可獲得的利潤(rùn)是600元.
(3)W=(-50x+800)(x-8)=-50x2+1200x-6400=-50(x-12)2+800
又∵水果每天的銷(xiāo)售量均低于225kg,水果的進(jìn)價(jià)為8元/千克,
∴-50x+800≥225,
∴x≤11.5,
∴當(dāng)x=11.5時(shí),W最大=787.5(元).
答:此時(shí)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)最大是787.5元.
考點(diǎn): 二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn), 將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.

(1)寫(xiě)出C點(diǎn)的坐標(biāo)為          ;
(2)設(shè)過(guò)A,D,C三點(diǎn)的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過(guò)A(-1,0),B(3,0),C(0,-3)三點(diǎn),求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

近期,海峽兩岸關(guān)系的氣氛大為改善.大陸相關(guān)部門(mén)對(duì)原產(chǎn)臺(tái)灣地區(qū)的15種水果實(shí)施進(jìn)口零關(guān)稅措施,擴(kuò)大了臺(tái)灣水果在大陸的銷(xiāo)售.某經(jīng)銷(xiāo)商銷(xiāo)售了臺(tái)灣水果鳳梨,根據(jù)以往銷(xiāo)售經(jīng)驗(yàn),每天的售價(jià)與銷(xiāo)售量之間有如下關(guān)系:

每千克售價(jià)(元)
40
39
38
37

30
每天銷(xiāo)量(千克)
60
65
70
75

110
設(shè)當(dāng)單價(jià)從40元/千克下調(diào)了x元時(shí),銷(xiāo)售量為y千克;
(1)寫(xiě)出y與x間的函數(shù)關(guān)系式;
(2)如果鳳梨的進(jìn)價(jià)是20元/千克,若不考慮其他情況,那么單價(jià)從40元/千克下調(diào)多少元時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)W最大?利潤(rùn)最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某區(qū)政府大力扶持大學(xué)生創(chuàng)業(yè).李剛在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=-10x+500.
(1)設(shè)李剛每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為每臺(tái)多少元時(shí),每月可獲得最大利潤(rùn)?
(2)如果李剛想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李剛想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

(1)點(diǎn)A的坐標(biāo)為          點(diǎn)B的坐標(biāo)為         ,點(diǎn)C的坐標(biāo)為        ;
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)坐標(biāo)為M,求四邊形ABMC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)求點(diǎn)A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫(huà)出該二次函數(shù)的大致圖象;
(2)說(shuō)出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案