有若干個整數(shù),若每兩個整數(shù)之和為361,380,381,382,383,400,401,402,420,422.則這些整數(shù)分別是 ______.
            根據(jù)每兩個整數(shù)之和有10種可能可得共有5個整數(shù),從而可設(shè)這五個整數(shù)為x、y、z、a、b
            (x<y<z<a<b),
            ∴可得
            x+y=361
            x+z=380
            z+b=420
            a+b=422
            ,
            ∵每兩個整數(shù)之和為361,380,381,382,383,400,401,402,420,422,
            ∴可得4(x+y+z+a+b)=361+380+381+382+383+400+401+402+420+422,
            ∴將x+y=361,a+b=422代入可得z=200,
            代入可得:x=180,z=y=181,a=202,b=220.
            故答案為:180,181,200,202,220.
            練習(xí)冊系列答案
            相關(guān)習(xí)題

            科目:初中數(shù)學(xué) 來源: 題型:

            有若干個整數(shù),若每兩個整數(shù)之和為361,380,381,382,383,400,401,402,420,422.則這些整數(shù)分別是
             

            查看答案和解析>>

            同步練習(xí)冊答案