【題目】如圖,在下列10×10的網(wǎng)格中,橫、縱坐標(biāo)均為整點的數(shù)叫做格點,例如A2,1)、B5,4)、C18)都是格點.

1)直接寫出ABC的面積;

2)將ABC繞點B逆時針旋轉(zhuǎn)90°得到A1BC1,在網(wǎng)格中畫出A1BC1;

3)在圖中畫出線段EF,使它同時滿足以下條件:①點EABC內(nèi);②點EF都是格點;③EF三等分BC;④EF.請寫出點E,F的坐標(biāo).

【答案】112;2)見解析;3E24),F7,8.

【解析】

1)用一個矩形的面積分別減去三個直角三角形的面積去計算△ABC的面積;
2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、C的對應(yīng)點A1、C1即可得到△A1BC1;
3)利用平行線分線段成比例得到CFBE=2,則EF三等分BC,然后寫出EF的坐標(biāo),根據(jù)勾股定理求出EF的長度為

解:(1△ABC的面積=4×7×7×1×3×3×4×412;

2)如圖,△A1BC1為所作;

3)如圖,線段EF為所作,其中E點坐標(biāo)為(2,4),F點坐標(biāo)為(78),EF的長度為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,將線段繞點按逆時針方向旋轉(zhuǎn)到線段.沿方向平移得到,且直線過點.

1)求的大。

2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現(xiàn)測得的夾角分別為,若點到地面的距離,坐墊中軸處與點的距離,求點到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+ca≠0)經(jīng)過C2,0),D0﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E0,﹣2)且平行于x軸,過AB兩點分別作直線l的垂線,垂足分別為點M、N

1)求此拋物線的解析式;

2)求證:AO=AM;

3)探究:

當(dāng)k=0時,直線y=kxx軸重合,求出此時的值;

試說明無論k取何值,的值都等于同一個常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(問題發(fā)現(xiàn))

如圖,正方形AEFG的兩邊分別在正方形ABCD的邊ABAD上,連接CF

填空:線段CFDG的數(shù)量關(guān)系為   ;

直線CFDG所夾銳角的度數(shù)為   

2)(拓展探究)

如圖,將正方形AEFG繞點A逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖進行說明.

3(解決問題)

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE90°,ABAC4,OAC的中點.若點D在直線BC上運動,連接OE,則在點D的運動過程中,線段OE長的最小值為   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t0.5h,B組為0.5ht1h,C組為1ht1.5h,D組為t1.5h.

請根據(jù)上述信息解答下列問題:

(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);

(2)該轄區(qū)約有18000名初中學(xué)生,請你估計其中達到國家規(guī)定體育活動時間的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O外的一點,CB與⊙O相切于點BAC交⊙O于點D,點E上的一點(不與點AB,D重合),若∠C48°,則∠AED的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,OBD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是(

A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12,CD=7,點E在邊AD上,,過點EEF//AB交邊BC于點F.

1)求線段EF的長;

2)設(shè),聯(lián)結(jié)AF,請用向量表示向量.

查看答案和解析>>

同步練習(xí)冊答案