【題目】問題原型:如圖①,在矩形中,,點邊中點,將線段繞點順時針旋轉得到線段,易得的面積為

初步探究:如圖②,在中,,將線段繞點順時針旋轉,得到線段,用含的代數(shù)式表示的面積,并說明理由.

簡單應用:如圖③,在等腰三角形中,,,將線段繞點順時針旋轉得到線段,直接寫出的面積.

【答案】初步探究:的面積為.理由見解析;簡單應用:

【解析】

初步探究:作EFBCF,如圖2,由旋轉的性質(zhì)得AB=EB,ABE=90°,再根據(jù)等角的余角相等得到∠A=EBF,則可根據(jù)“AAS”可判斷ABC≌△BEF,所以BC=EF=a,然后根據(jù)三角形面積公式可得到SBCEa2

簡單應用:作AHBCH,連結EH,如圖3,根據(jù)等腰三角形的性質(zhì)得CH=BH=BC=3,然后利用探究的結論得到SBEH=BH2=,于是有SBCE=2SBEH=9.

初步探究:的面積為.理由如下:

,如圖

∵線段繞點順時針旋轉,得到線段,

,,

,

,

,

;

簡單應用:作,連結,如圖

,

,

∵線段繞點順時針旋轉得到線段

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在課堂上,老師將除顏色外都相同的1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓全班同學依次進行摸球試驗,每次隨機摸出一個球,記下顏色再放回攪勻,下表是試驗得到的一組數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

摸到黑球的次數(shù)m

26

37

49

124

200

摸到黑球的頻率

a

表中a的值等于______;

估算口袋中白球的個數(shù);

用畫樹狀圖或列表的方法計算連續(xù)兩名同學都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學玩摸球游戲,游戲規(guī)則如下:

先由甲同學從中隨機摸出一球,記下球號,并放回攪勻,再由乙同學從中隨機摸出一球,記下球號。將甲同學摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問:這個游戲公平嗎?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳生活,綠色出行”,20171,某公司向深圳市場新投放共享單車640.

(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000.請問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場需求不斷增加,某商城準備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500/輛,售價為700/輛,B型車進價為1000/輛,售價為1300/輛。假設所進車輛全部售完,為了使利潤最大,該商城應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于某一點成中心對稱的兩個圖形,下列說法中,正確的個數(shù)有( )

①這兩個圖形完全重合;②對稱點的連線互相平行③對稱點所連的線段相等;④對稱點的連線相交于一點;⑤對稱點所連的線段被同一點平分⑥對應線段互相平行或在同一直線上,且一定相等.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里有分別標注2、4、6的3個小球(小球除數(shù)字不同外,其余都相同),另有3張背面完全一樣、正面分別寫有數(shù)字6、7、8的卡片.現(xiàn)從口袋中任意摸出一個小球,再從這3張背面朝上的卡片中任意摸出一張卡片.

(1)請你用列表或畫樹狀圖的方法,表示出所有可能出現(xiàn)的結果;

(2)小紅和小莉做游戲,制定了兩個游戲規(guī)則:

規(guī)則1:若兩次摸出的數(shù)字,至少有一次是“6”,小紅贏;否則,小莉贏.

規(guī)則2:若摸出的卡片上的數(shù)字是球上數(shù)字的整數(shù)倍時,小紅贏;否則,小莉贏.

小紅要想在游戲中獲勝,她會選擇哪一種規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點,易證:CD=BE,△AMN是等邊三角形:

(1)當把△ADE繞點A旋轉到圖2的位置時,CD=BE嗎?若相等請證明,若不等于請說明理由;

(2)當把△ADE繞點A旋轉到圖3的位置時,△AMN還是等邊三角形嗎?若是請證明,若不是,請說明理由(可用第一問結論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個矩形ABCD的較短邊長為2.

(1)如圖①,若沿長邊對折后得到的矩形與原矩形相似,求它的另一邊長;

(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2014浙江金華)如圖,矩形ABOD的兩邊OB,OD都在坐標軸的正半軸上,OD3,另兩邊與反比例函數(shù) (k≠0)的圖象分別相交于點E、F,且DE2.過點EEHx軸于點H,過點FFGEH于點G.回答下面的問題:

(1)①求反比例函數(shù)的解析式.

當四邊形AEGF為正方形時,求點F的坐標.

(2)小亮進一步研究四邊形AEGF的特征后提出問題:AEEG時,矩形AEGF與矩形DOHE能否全等?能否相似?

針對小亮提出的問題,請你判斷這兩個矩形能否全等(直接寫出結論即可).這兩個矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由.

查看答案和解析>>

同步練習冊答案