【題目】問題提出:若一個四邊形的兩組對邊乘積之和等于它的兩條對角線的乘積,則稱這個四邊形為巧妙四邊形.
初步思考:(1)寫出你所知道的四邊形是巧妙四邊形的兩種圖形的名稱: , .
(2)小敏對巧妙四邊形進行了研究,發(fā)現圓的內接四邊形一定是巧妙四邊形.
如圖①,四邊形ABCD是⊙O的內接四邊形.
求證:AB·CD+BC·AD=AC·BD.
小敏在解答此題時,利用了“相似三角形”進行證明,她的方法如下:
在BD上取點M,使∠MCB=∠DCA.
(請你在下面的空白處完成小敏的證明過程.)
推廣運用:如圖②,在四邊形ABCD中,∠A=∠C=90°,AD=,AB=,CD=2.求AC的長.
【答案】(1)正方形,矩形(答案不惟一);(2)證明見解析;(3).
【解析】試題分析:(1)根據巧妙四邊形的定義可寫出符合條件的四邊形,等腰梯形,矩形,正方形等,(2)圓內接四邊形對角線為圓內兩條相交的弦,根據同弧所對圓周角相等可證等角,再根據兩角分別對應相等的兩個三角形相似可證相似三角形,根據相似三角形的性質可得對應邊成比例,即可求證,(3)連接BD,可根據題目條件證明四點共圓,即四邊形ABCD為圓內接四邊形,再根據(2)的結論代入數值即可計算求解.
試題解析:(1)正方形,矩形(答案不惟一),
(2)∵ 在⊙O中,∠DAC和∠DBC是所對的圓周角,
∴ ∠DAC=∠DBC,
又 ∠MCB=∠DCA,
∴△MCB∽△DCA,
∴,
即 BC·AD=AC·BM,
∵ 在⊙O中,∠CDB和∠CAB是所對的圓周角,
∴ ∠CDB=∠CAB.
又 ∠DCM=∠ACB,
∴ △DCM∽△ACB,
∴ ,
即 AB·CD=AC·DM,
AC·BM=AC·(DM+BM),
即 AB·CD+BC·AD=AC·BD,
(3)連接BD,取BD中點M,連接AM,CM,
在Rt△ABD中,BD==3,
在Rt△BCD中,BC==,
∵ 在Rt△ABD中,M是BD中點,
∴AM=BD,
∵在Rt△BCD中,M是BD中點,
∴CM=BD,
∴AM=CM=MB=MD,
∴A,B,C,D四點在以點M為圓心,MA為半徑的圓上,
即四邊形ABCD是⊙O的內接四邊形,
由(2)的結論可知AB·CD+BC·AD=AC·BD,
∴ AC=.
科目:初中數學 來源: 題型:
【題目】請在橫線上填上合適的內容,完成下面的證明:
如圖,射線AH交折線ACGFEN于點B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.
證明:∵∠A=∠1(已知)
∴AC∥GF( )
∴( )( )
∵∠C=∠F(已知)
∴∠F=∠G
∴( )( )
∴( )( )
∵BM平分∠CBD,EN平分∠FEH
∴∠2= ∠3=
∴∠2=∠3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點M,交這個拋物線于點N.求當t 取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班將舉行“數學知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分別是AB邊上的中線和高.
(1)求證:AE=ED;
(2)若AC=2,求△CDE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線過點, . 為線段OA上一個動點(點M與點A不重合),過點M作垂直于x軸的直線與直線AB和拋物線分別交于點P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點P是MN的中點,那么求此時點N的坐標;
(3)如果以B,P,N為頂點的三角形與相似,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為( )
A. (﹣3,7) B. (﹣1,7) C. (﹣4,10) D. (0,10)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.在⊙O中. AE直徑,AD是弦,B為AE延長線上--點,作BC⊥AD,與AD延長線交于點C.且∠CBD=∠A.
(1)判斷直線BD與⊙0的位置關系,并證明你的結論;
(2)若∠A=30,OA=6,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com