精英家教網 > 初中數學 > 題目詳情
如圖(1),在Rt△ABC中,∠ACB=90°,D是斜邊AB的中點,動點P從B點出發(fā),沿B→C→A運動,設S△DPB=y,點P運動的路程為x,若y與x之間的函數圖象如圖(2)所示,則△ABC的面積為( )

A.4
B.6
C.12
D.14
【答案】分析:根據函數的圖象知BC=4,AC=3,根據直角三角形的面積的求法即可求得其面積.
解答:解:∵D是斜邊AB的中點,
∴根據函數的圖象知BC=4,AC=3,
∵∠ACB=90°,
∴S△ABC=AC•BC=×3×4=6.
故選B.
點評:本題考查了動點問題的函數圖象,要能根據函數圖象的性質和圖象上的數據分析得出函數的類型和所需要的條件,結合實際意義得到正確的結論.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•歷城區(qū)三模)(1)如圖1所示,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BE=DF,連接AE、CF.請你猜想:AE與CF有怎樣的數量關系?并對你的猜想加以證明.
(2)如圖2所示,在Rt△ABC中,∠BAC=90°,點D在BC邊上,且△ABD是等邊三角形.若AB=2,求△ABC的周長.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•中江縣二模)如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經過C、D兩點,與斜邊AB交于點E,連接BO、ED,且BO∥ED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)連接CE,求證:AE2=AD•AC;
(3)若⊙O的半徑為5,sin∠DFE=
35
,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•天河區(qū)一模)如圖(1),AB、BC、CD分別與⊙O相切于點E、F、G,且AB∥CD,若OB=6,OC=8,
(1)求BC和OF的長;
(2)求證:E、O、G三點共線;
(3)小葉從第(1)小題的計算中發(fā)現:等式
1
OF2
=
1
OB2
+
1
OC2
成立,于是她得到這樣的結論:
如圖(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設BC=a,AC=b,CD=h,則有等式
1
a2
+
1
b2
=
1
h2
成立.請你判斷小葉的結論是否正確,若正確,請給予證明,若不正確,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D.
求證:AD=
14
AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知:在Rt△ABC中,∠C=90°,E為AB的中點,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度數.

查看答案和解析>>

同步練習冊答案