【題目】如圖,在正方形ABCD中,AB=4,P是線段AD上的動(dòng)點(diǎn),PE⊥AC于點(diǎn)E,PF⊥BD于點(diǎn)F,則PE+PF的值為( 。

A.2
B.4
C.4
D.2

【答案】A
【解析】解:在正方形ABCD中,OA⊥OD,∠OAD=45°,
∵PE⊥AC,PF⊥BD,
∴四邊形OEPF為矩形,△APE是等腰直角三角形,
∴PF=OE,PE=BE,
∴PE+PF=BE+OE=OA,
∵AB=BC=4,
∴OA=AC=x4=2 ,
∴PE+PF=2 ,
故選A.
【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,已知ADBC,B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點(diǎn)E,連接DE,作EFDE,交直線AB于點(diǎn)F.

 。1)若點(diǎn)FB重合,求CE的長;(3分)

 。2)若點(diǎn)F在線段AB上,且AF=CE,求CE的長.(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x2+4x+10時(shí),原方程應(yīng)變形為(  )

A.(x+2)23B.(x2)23C.(x+2)25D.(x2)25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩公司為“見義勇為基金會”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.

請你根據(jù)以上信息,提出一個(gè)用分式方程解決的問題,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校假期由校長帶領(lǐng)該校三好學(xué)生去旅游甲旅行社說若校長買全票一張,則學(xué)生半價(jià).乙旅行社說全部人六折優(yōu)惠若全票價(jià)是1200

(1)若學(xué)生人數(shù)是20,甲、乙旅行社收費(fèi)分別是多少?

(2)當(dāng)學(xué)生人數(shù)的多少時(shí)兩家旅行社的收費(fèi)一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(3,4),點(diǎn)B為直線x=1上的動(dòng)點(diǎn),設(shè)B(-1,y).

(1)如圖①,若△ABO是等腰三角形且AO=AB時(shí),求點(diǎn)B的坐標(biāo);

(2)如圖②,若點(diǎn)Cx,0)且-1<x<3,BCAC垂足為點(diǎn)C;

①當(dāng)x=0時(shí),求tan∠BAC的值;

②若ABy軸正半軸的所夾銳角為α,當(dāng)點(diǎn)C在什么位置時(shí)tanα的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式﹣x3y2﹣xy﹣5+3x4y2按x的升冪排列是(  )
A.﹣5﹣xy+0x2﹣x3y2+3x4y2
B.﹣5﹣xy+0x2+x3y2﹣3x4y2
C.﹣5﹣xy﹣x3y2+3x4y2
D.3x4y2﹣x3y2﹣xy﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:2000﹣2015=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法將二次三項(xiàng)式x2+4x﹣96變形,結(jié)果為(  )

A. (x+2)2+100 B. (x﹣2)2﹣100 C. (x+2)2﹣100 D. (x﹣2)2+100

查看答案和解析>>

同步練習(xí)冊答案