開心畫一畫(在原圖上作圖,保留作圖痕跡)
【小題1】在AD的右側(cè)作∠DCP=∠DAB;

【小題2】在射線CP上取一點(diǎn)E,使CE=AB,連接BE.AE.
【小題3】畫出△ABE的BE邊上的高AF和AB邊上的高EG.
(2分)如果已知:AB=10,BE=12,EG=6,則AF=    (直接填結(jié)果)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

若∠A的補(bǔ)角為78°29′.則∠A=               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

若a∥b,b⊥c,則a    c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖所示,是用一張長方形紙條折成的.如果∠1=130°,那么∠2=___ ___   °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖, AC∥DF,直線AF分別與直線BD、CE 相交于點(diǎn)G、H,∠1=∠2,
求證: ∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH(                           ),
∴∠2=__   _______( 等量代換  )
       // ___________( 同位角相等,兩直線平行 )
∴∠C=_          _( 兩直線平行,同位角相等 )
又∵AC∥DF(            )
∴∠D=∠ABG (                           )
∴∠C=∠D (              )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)∠DCA的度數(shù);
(2)∠DCE的度數(shù). 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長EO和直線AB相交于點(diǎn)B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF。

以下是他的想法,請你填上根據(jù)。小華是這樣想的:
因?yàn)镃F和BE相交于點(diǎn)O,
根據(jù)                                  得出∠COB=∠EOF;
而O是CF的中點(diǎn),那么CO=FO,又已知 EO=BO,                
根據(jù)                                  得出△COB≌△FOE,   
根據(jù)                                  得出BC=EF,
根據(jù)                                  得出∠BCO=∠F,
既然∠BCO=∠F,根據(jù)                                              出AB∥DF,
既然AB∥DF,根據(jù)                                           得出∠ACE和∠DEC互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
⑴試說明:OB∥AC;
⑵如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.試求∠EOC的度數(shù);
⑶在⑵的條件下,若左右平行移動AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;
⑷在⑶的條件下,當(dāng)∠OEB=∠OCA時,試求∠OCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,平分平分 __.

查看答案和解析>>

同步練習(xí)冊答案