【題目】如圖,在邊長(zhǎng)為3cm的正方形ABCD中,點(diǎn)E為BC邊上的任意一點(diǎn),AF⊥AE,AF交CD的延長(zhǎng)線于F,則四邊形AFCE的面積為cm2

【答案】9
【解析】解:∵四邊形ABCD是正方形, ∴AD=AB,∠ADF=∠DAB=∠B=90°,
∴∠BAE+∠DAE=90°,
∵AF⊥AE,
∴∠DAF+∠DAE=90°,
∴∠BAE=∠DAF,
在△BAE和△DAF中,
,
∴△BAE≌△DAF(ASA),
∴SBAE=SDAF
∴S四邊形AFCE=SDAF+S四邊形ADCE=SBAE+S四邊形ADCE=S正方形=3×3=9(cm2).
所以答案是:9.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫(huà)出與△ABC 關(guān)于 y 軸對(duì)稱(chēng)的圖形△A1B1C1;

(2)寫(xiě)出△A1B1C1 各頂點(diǎn)坐標(biāo);

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(a2-4a+2)(a2-4a+6)+4進(jìn)行因式分解的過(guò)程:

解:設(shè)a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學(xué)因式分解的結(jié)果是否徹底:________(徹底不徹底”);

(2)若不徹底,請(qǐng)你直接寫(xiě)出因式分解的最后結(jié)果:________;

(3)請(qǐng)你模仿以上方法對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=BC,ABC≌△A1BC1,A1BAC于點(diǎn)E,A1C1分別交AC、BCD、F兩點(diǎn),觀察并猜想線EA1FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今,網(wǎng)上購(gòu)物已成為一種新的消費(fèi)時(shí)尚,精品書(shū)店想購(gòu)買(mǎi)一種賀年卡在元旦時(shí)銷(xiāo)售,在互聯(lián)網(wǎng)上搜索了甲、乙兩家網(wǎng)

店(如圖所示),已知兩家網(wǎng)店的這種賀年卡的質(zhì)量相同,請(qǐng)看圖回答下列問(wèn)題:

(1)假若精品書(shū)店想購(gòu)買(mǎi)x張賀年卡,那么在甲、乙兩家網(wǎng)店分別需要花多少錢(qián)(用含有x的式子表示)?(提示:如需付運(yùn)費(fèi)時(shí)運(yùn)費(fèi)只需付一次,即8元)

(2)精品書(shū)店打算購(gòu)買(mǎi)300張賀年卡,選擇哪家網(wǎng)店更省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°
B.∠ADE=30°
C.∠ADE=∠ADC
D.∠ADE=∠ADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點(diǎn)OBC上,求證:△ABC是等腰三角形.

(2)如圖2,若點(diǎn)O在△ABC內(nèi)部,求證:AB=AC.

(3)若點(diǎn)O點(diǎn)在△ABC的外部,△ABC是等腰三角形還成立嗎?請(qǐng)畫(huà)圖表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,AB=AC,點(diǎn)M、N在邊BC上.

(1)如圖1,如果AM=AN,求證:BM=CN

(2)如圖2,如果MN是邊BC上任意兩點(diǎn),并滿足∠MAN=45°,那么線段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)C,若ACAB=12,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案