某商家獨家銷售具有地方特色的某種商品,每件進(jìn)價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y(件) | … | 450 | 400 | 300 | 250 | … |
解:(1)y與x的函數(shù)關(guān)系式為:y=﹣10x+1000。
(2)由題意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000。
∵﹣10<0,∴函數(shù)圖象開口向下,對稱軸為x=70。
∴當(dāng)40≤x≤70時,銷售利潤隨著銷售單價的增大而增大。
(3)當(dāng)購進(jìn)該商品的貸款為10000元時,y=10000÷40=250(件),此時x=75。
由(2)得當(dāng)x≥70時,S隨x的增大而減小,
∴當(dāng)x=70時,銷售利潤最大,此時S=9000。
∴該商家最大捐款數(shù)額是9000元。
解析試題分析:(1)設(shè)y=kx+b,把點的坐標(biāo)代入解析式,求出k、b的值,即可得出函數(shù)解析式:
設(shè)y=kx+b,由題意得,,解得:。
∴y與x的函數(shù)關(guān)系式為:y=﹣10x+1000。
(2)根據(jù)利潤=(售價﹣進(jìn)價)×銷售量,列出函數(shù)關(guān)系式,繼而確定銷售利潤隨著銷售單價的增大而增大的銷售單價的范圍。
(3)根據(jù)購進(jìn)該商品的貸款不超過10000元,求出進(jìn)貨量,然后求最大銷售額即可。
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場銷售一種進(jìn)價為20元/臺的臺燈,經(jīng)調(diào)查發(fā)現(xiàn),該臺燈每天的銷售量W(臺),銷售單價x(元)滿足W=-2x+80,設(shè)銷售這種臺燈每天的利潤為y(元).求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C1的頂點為P(1,0),且過點(0,).將拋物線C1向下平移h個單位(h>0)得到拋物線C2.一條平行于x軸的直線與兩條拋物線交于A、B、C、D四點(如圖),且點A、C關(guān)于y軸對稱,直線AB與x軸的距離是m2(m>0).
(1)求拋物線C1的解析式的一般形式;
(2)當(dāng)m=2時,求h的值;
(3)若拋物線C1的對稱軸與直線AB交于點E,與拋物線C2交于點F.求證:tan∠EDF﹣tan∠ECP=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,已知拋物線經(jīng)過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點坐標(biāo)和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線與直線y=x交于點A,點B在直線上,∠BOA=90°.拋物線過點A,O,B,頂點為點E.
(1)求點A,B的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式及頂點E的坐標(biāo);
(3)設(shè)直線y=x與拋物線的對稱軸交于點C,直線BC交拋物線于點D,過點E作FE∥x軸,交直線AB于點F,連接OD,CF,CF交x軸于點M.試判斷OD與CF是否平行,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某公司銷售一種進(jìn)價為20元/個的計算機(jī),其銷售量y(萬個)與銷售價格x(元/個)的變化如下表:
價格x(元/個) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個) | … | 5 | 4 | 3 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點坐標(biāo)為.由勾股定理得,所以A、B兩點間的距離公式為.
注:上述公式對A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(1)求A、B兩點的坐標(biāo)及C點的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點A(﹣3,0)和點B(1,0).與y軸交于點C,頂點為D.
(1)求頂點D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點P,且∠PAB=∠DAC,求平移后拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com