如圖,已知拋物線(xiàn)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.點(diǎn)MO點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向B運(yùn)動(dòng),過(guò)Mx軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)P,交BCQ

(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);

(2)設(shè)當(dāng)點(diǎn)M運(yùn)動(dòng)了x(秒)時(shí),四邊形OBPC的面積為S,求Sx的函數(shù)關(guān)系式,并指出自變量x的取值范圍.

(3)在線(xiàn)段BC上是否存在點(diǎn)Q,使得△DBQ成為BQ為一腰的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線(xiàn)y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過(guò)坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃岡)如圖,已知拋物線(xiàn)的方程C1:y=-
1m
(x+2)(x-m)(m>0)與x軸相交于點(diǎn)B、C,與y軸相交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線(xiàn)C1過(guò)點(diǎn)M(2,2),求實(shí)數(shù)m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)條件下,在拋物線(xiàn)的對(duì)稱(chēng)軸上找一點(diǎn)H,使BH+EH最小,并求出點(diǎn)H的坐標(biāo);
(4)在第四象限內(nèi),拋物線(xiàn)C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與△BCE相似?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•道外區(qū)三模)如圖,已知拋物線(xiàn)y=ax2+bx+c過(guò)點(diǎn)A(-1,0)、B(3,0)、C(0,3)
(1)求此拋物線(xiàn)的解析式.
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,連接CD、BD,求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=ax2-4x+c經(jīng)過(guò)點(diǎn)A(0,-6)和B(3,-9).
(1)求出拋物線(xiàn)的解析式;寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸方程及頂點(diǎn)坐標(biāo);
(2)拋物線(xiàn)與x軸交于C、D兩點(diǎn),在拋物線(xiàn)上能否找一點(diǎn)N使三角形CDN的面積是三角形CDA的1.5倍?若存在求出N點(diǎn)坐標(biāo),不存在說(shuō)明理由;
(3)若點(diǎn)P(m,m)與點(diǎn)Q均在拋物線(xiàn)上(其中m>0),且這兩點(diǎn)關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng).在拋物線(xiàn)的對(duì)稱(chēng)軸上尋找一點(diǎn)M,使得△QMA的周長(zhǎng)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湘西自治州初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試題 題型:044

如圖,已知拋物線(xiàn)y=ax2-4x+c經(jīng)過(guò)點(diǎn)A(0,-6)和B(3,-9),

(1)求出拋物線(xiàn)的解析式;

(2)寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸方程及頂點(diǎn)坐標(biāo);

(3)點(diǎn)P(m,m)與點(diǎn)Q均在拋物線(xiàn)上(其中m>0),且這兩點(diǎn)關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸,對(duì)稱(chēng),求m的值及點(diǎn)Q的坐標(biāo);

(4)在滿(mǎn)足(3)的情況下,在拋物線(xiàn)的對(duì)稱(chēng)軸上尋找一點(diǎn)M,使得△QMA的周長(zhǎng)最小.

查看答案和解析>>

同步練習(xí)冊(cè)答案