【題目】當三角形中的一個內角α是另一個內角β的一半時,我們稱此三角形為特征三角形,其中α稱為特征角.如果一個特征三角形特征角為直角三角形,則這個特征角的度數(shù)為______

【答案】45°或30°

【解析】

分①特征角2倍是直角時,根據(jù)特征角的定義列式計算即可得解;②特征角2倍與特征角都不是直角,根據(jù)直角三角形兩銳角互余列方程求解即可.

解:①特征角2倍是直角時,特征角”=×90°=45°;

特征角2倍與特征角都不是直角時,設特征角是x”,

由題意得,x+2x=90°,

解得x=30°

所以,特征角30°

綜上所述,這個特征角的度數(shù)為45°30°

故答案為:45°30°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,AB2,BC5,∠MPN90°,且∠MPN的直角頂點在BC邊上,BP1

①特殊情形:若MP過點A,NP過點D,則   

②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉,使PMAB邊于點E,PNAD邊于點F,當點E與點B重合時,停止旋轉.在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.

2)拓展探究:在RtABC中,∠ABC90°,ABBC2,ADAB,⊙A的半徑為1,點E是⊙A上一動點,CFCEAD于點F.請直接寫出當△AEB為直角三角形時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A,B兩點,COB的中點,DAB上一點,四邊形OEDC是菱形,則OAE的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:在綜合與實踐課上,老師讓同學們以矩形紙片的剪拼為主題開展數(shù)學活動.如圖1:將矩形紙片ABCD沿對角線AC剪開,得到ABCACD.并且量AB4cm,AC8cm,問題解決:

1)將圖1中的ACD以點為A旋轉中心,按逆時針方向能轉∠α,使∠α=∠BAC,得到如圖2所示的AC'D,過點CAC'的平行線,與DC'的延長線交于點E,則四邊形ACEC'的形狀是   

2)縝密小組將圖1中的ACD以點A為旋轉中心,按逆時針方向旋轉,使BA、D三點在同一條直線上,得到如圖3所示的AC'D,連接CC',取CC'的中點F,連接AF并延長到點G,使FGAF,連接CG、C'G,得到四邊形ACGC',發(fā)現(xiàn)它是正方形,請你證明這個結論.

實踐探究:(3)創(chuàng)新小組在縝密小組發(fā)現(xiàn)結論的基礎上,進行如下操作:將ABC沿著BD方向平移,使點B與點A重合,此時A點平移至A'點,A'CBC'相交于點H,如圖4所示,連接CC',試求tanC'CH的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:經(jīng)過三角形一邊中點,且平分三角形周長的直線叫做這個三角形在該邊上的中分線,其中落在三角形內部的部分叫做中分線段.

1)如圖,△ABC中,ACAB,DE是△ABCBC邊上的中分線段,FAC中點,過點BDE的垂線交AC于點G,垂足為H,設ACbABc

求證:DFEF;

b6c4,求CG的長度;

2)若題(1)中,SBDHSEGH,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20191月有300名教師參加了新技術支持未來教育培訓活動,會議就面向未來的教育家庭教育這兩個問題隨機調查了60位教師,并對數(shù)據(jù)進行了整理、描述和分析.下面給出了部分信息:

a.關于家庭教育問題發(fā)言次數(shù)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:0≤x4,4≤x88≤x12,12≤x1616≤x20,20≤x≤24):

b.關于家庭教育問題發(fā)言次數(shù)在8≤x12這一組的是:

8899910101010101011111111

c面向未來的教育家庭教育這兩問題發(fā)言次數(shù)的平均數(shù)、眾數(shù)、中位數(shù)如下:

問題

平均數(shù)

中位數(shù)

眾數(shù)

面向未來的學校教育

11

10

9

家庭教育

12

m

10

根據(jù)以上信息,回答下列問題:

1)表中m的值為______;

2)在此次采訪中,參會教師更感興趣的問題是______(填面向未來的教育家庭教育),理由是______

3)假設所有參會教師都接受調查,估計在家庭教育這個問題上發(fā)言次數(shù)超過8次的參會教師有______位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點G,作GDAO于點D,交AC于點E,交⊙O于點F,MGE的中點,連接CF,CM.

(1)判斷CM與⊙O的位置關系,并說明理由;

(2)若∠ECF=2A,CM=6,CF=4,求MF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OA是⊙O的半徑,AB為⊙O的弦,過點OOPOA,交AB的延長線上一點POP交⊙O于點D,連接AD,BD,過點B作⊙O的切線BCOP于點C

(1)求證:∠CBP=∠ADB;

(2)O44,AB2,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax23ax+c的圖象與x軸交于點A、B,與y軸交于點C直線y=﹣x+4經(jīng)過點BC

1)求拋物線的表達式;

2)過點A的直線交拋物線于點M,交直線BC于點N

N位于x軸上方時,是否存在這樣的點M,使得AMNM53?若存在,求出點M的坐標;若不存在,請說明理由.

連接AC,當直線AM與直線BC的夾角∠ANB等于∠ACB2倍時,請求出點M的橫坐標.

查看答案和解析>>

同步練習冊答案