如圖,取一張長方形紙片ABCD,按圖中所示的方式將紙片折疊,EF、EG為兩條褶痕,求∠GEF的度數(shù)是
90°
90°

分析:由根據(jù)折疊的性質(zhì)可得:∠BEF=∠B′EF,∠CEG=∠C′EG,繼而可求得∠GEF的度數(shù).
解答:解:∵根據(jù)折疊的性質(zhì)可得:∠BEF=∠B′EF,∠CEG=∠C′EG,
∴∠GEF=∠B′EF+∠C′EG=
1
2
(∠B′EB+∠C′EC)=
1
2
×180°=90°.
故答案為:90°.
點(diǎn)評(píng):此題考查了折疊的性質(zhì).此題比較簡單,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

綜合實(shí)踐
問題背景
某課外興趣小組在一次折紙活動(dòng)中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點(diǎn)B分別與點(diǎn)A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對(duì)應(yīng)條格所在直線的交點(diǎn),用平滑的曲線順次連接各交點(diǎn),得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點(diǎn)B與原點(diǎn)O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點(diǎn)B落在邊AD上的E處,過點(diǎn)E作EQ⊥BC,垂足為Q,交直線MN于點(diǎn)P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點(diǎn)P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運(yùn)用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),折痕與DC的延長線交于點(diǎn)F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的
53
,若存在,寫出點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:精編教材全解 數(shù)學(xué) 九年級(jí)上冊(cè) (配蘇科版) 蘇科版 題型:044

我們知道了菱形的性質(zhì),那想一想如何利用折紙、剪切的方法,既快又準(zhǔn)確地剪出一個(gè)菱形的紙片?下面給出三種方法,

方法一:將一張長方形的紙橫對(duì)折,再豎對(duì)折,然后沿圖中的虛線剪下,打開即是菱形紙片.

方法二:如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分ABCD就是菱形.

方法三:將一張長方形紙對(duì)折,再在折痕上取任意長為底邊,剪一個(gè)等腰三角形,然后打開即是菱形(如圖).試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中學(xué)教材全解 七年級(jí)數(shù)學(xué)下 (北京師大版) 北京師大版 題型:059

讓我們一起來進(jìn)行一個(gè)折紙游戲吧!如圖所示,取一張長方形的紙片ABCD,將其折疊,使D點(diǎn)與B點(diǎn)重合,EF為折痕,觀察圖形,圖中有全等的三角形嗎?如果有,請(qǐng)給出理由;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

如圖所示,取一張長方形的硬紙ABCD對(duì)折,MN是折痕,把面ABNM平攤在桌面上,另一個(gè)面CDMN不論怎樣改變位置,總有MN∥______,MN∥______,因此______∥______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鎮(zhèn)江市揚(yáng)中市外國語學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

綜合實(shí)踐
問題背景
某課外興趣小組在一次折紙活動(dòng)中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點(diǎn)B分別與點(diǎn)A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對(duì)應(yīng)條格所在直線的交點(diǎn),用平滑的曲線順次連接各交點(diǎn),得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點(diǎn)B與原點(diǎn)O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點(diǎn)B落在邊AD上的E處,過點(diǎn)E作EQ⊥BC,垂足為Q,交直線MN于點(diǎn)P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點(diǎn)P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運(yùn)用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),折痕與DC的延長線交于點(diǎn)F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案