【題目】我縣某公司參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐助給慈善機構.根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量 (單位:個)與銷售單價 (單位:元/個)之間的關系式為.
(1) 若許愿瓶的進價為6元/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 (單位:元)與銷售單價 (單位:元/個)之間的函數(shù)關系式;
(2) 在(1)問的條件下,若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.
【答案】(1) ;(2)銷售單價定為每個15元時,利潤最大為1350元.
【解析】試題分析:(1)利用w=銷量×每個利潤,進而得出函數(shù)關系式;
(2)利用進貨成本不超過900元,得出x的取值范圍,進而得出函數(shù)最值.
試題解析:解:(1)由題意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,∴w與x的函數(shù)關系式為w=﹣30x2+780x﹣3600;
(2)由題意得:6(﹣30x+600)≤900,解得:x≥15,在w=﹣30x2+780x﹣3600中,對稱軸為:x=﹣=13.∵a=﹣30,∴當x>13時,w隨x的增大而減小,∴x=15時,w最大為:(15﹣6)(﹣30×15+600)=1350,∴銷售單價定為每個15元時,利潤最大為1350元.
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+b(k、b是常數(shù))當自變量x的取值為1≤x≤5時,對應的函數(shù)值的范圍為﹣2≤y≤2,則此一次函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=x+n﹣2與直線l2:y=mx+n相交于點P(1,2).
(1)求m,n的值;
(2)請結合圖象直接寫出不等式mx+n>x+n﹣2的解集.
(3)若直線l1與y軸交于點A,直線l2與x軸交于點B,求四邊形PAOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進而求出等邊△ABC的邊長為__________;
問題得到解決.
請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當﹣2<x<2時,下列函數(shù)中,函數(shù)值y隨自變量x增大而增大的有( 。﹤.
①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中.
(1)請直接寫出點、兩點的坐標::___________;:___________;
(2)若把向上平移3個單位,再向右平移2個單位得,請在上圖中畫出,并寫出點的坐標___________;
(3)求的面積是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著氣溫的升高,空調(diào)的需求量大增.某家電超市對每臺進價分別為2000元、1700元的、兩種型號的空調(diào),近兩周的銷售情況統(tǒng)計如下:
銷售時段 | 銷售量 | 銷售收入 | |
型號 | 型號 | ||
第一周 | 6臺 | 7臺 | 31000元 |
第二周 | 8臺 | 11臺 | 45000元 |
(1)求、兩種型號的空調(diào)的銷售價;
(2)若該家電超市準備用不多于54000元的資金,采購這兩種型號的空調(diào)30臺,求種型號的空調(diào)最多能采購多少臺?
(3)在(2)的條件下,該家電超市售完這30臺空調(diào)能否實現(xiàn)利潤不低于15800元的目標?若能,請給出采購方案.若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在課外學習時遇到這樣一個問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個函數(shù)互為“旋轉函數(shù)”.
求函數(shù)y=﹣x2+4x﹣3的“旋轉函數(shù)”.小明是這樣思考的:由函數(shù)y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個函數(shù)的“旋轉函數(shù)”.
(1)請參考小明的方法寫出函數(shù)y=﹣x2+4x﹣3的“旋轉函數(shù)”;
(2)若函數(shù)與y=x2﹣3nx+n互為“旋轉函數(shù)”,求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地計劃用120~180天(含120與180天)的時間建設一項水利工程,工程需要運送的土石方總量為360萬米3.
(1)寫出運輸公司完成任務所需的時間y(單位:天)與平均每天的工作量x(單位:萬米3)之間的函數(shù)關系式.并給出自變量x的取值范圍;
(2)由于工程進度的需要,實際平均每天運送土石方比原計劃多20%,工期比原計劃減少了24天,原計劃和實際平均每天運送土石方各是多少萬米3?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com