如圖,點(diǎn)E是DF上一點(diǎn),點(diǎn)B在AC上,∠1=∠2,∠C=∠D,試說(shuō)明DF∥AC的理由。

理由:∵∠1=∠2 (已知)

∠1=∠3,∠2=∠4 (                  )

∴∠3=∠4 (                  )

∴______∥______ (                              )

∴∠C=∠DBA (                              )

又∵∠C=∠D ( 已知 )

∴∠DBA=∠D (                     )

∴DF∥AC (                               )

 

【答案】

對(duì)頂角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行

【解析】

試題分析:根據(jù)平行線的判定與性質(zhì)依次分析即可得到結(jié)果.

理由:∵∠1=∠2 (已知)

∠1=∠3,∠2=∠4 (對(duì)頂角相等)

∴∠3=∠4 (等量代換)

∴BD∥CE(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠C=∠DBA (兩直線平行,同位角相等)

又∵∠C=∠D ( 已知 )

∴∠DBA=∠D (等量代換)

∴DF∥AC (內(nèi)錯(cuò)角相等,兩直線平行).

考點(diǎn):平行線的判定與性質(zhì)

點(diǎn)評(píng):平行線的判定與性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見(jiàn)題,一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,OC=4,AO=2OC,且精英家教網(wǎng)拋物線對(duì)稱軸為直線x=-3.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)己知矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F、G分別在AC、BC上,設(shè)OD=m,矩形DEFG的面積為S,當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=
25
DF
,求出此時(shí)點(diǎn)M的坐標(biāo);
(3)若點(diǎn)Q是拋物線上一點(diǎn),且橫坐標(biāo)為-4,點(diǎn)P是y軸上一點(diǎn),是否存在這樣的點(diǎn)P,使得△BPQ是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、將兩個(gè)等邊△ABC和△DEF(DE>AB)如圖所示擺放,點(diǎn)D是BC上的一點(diǎn)(除B、C點(diǎn)外).把△DEF繞頂點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使得邊DE、DF與△ABC的邊(除BC邊外)分別相交于點(diǎn)M、N.
(1)∠BMD和∠CDN相等嗎?
(2)畫出使∠BMD和∠CDN相等的所有情況的圖形;
(3)在(2)題中任選一種圖形說(shuō)明∠BMD和∠CDN相等的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

1.研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖②所示,則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

2.請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?

3.研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任意作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.

4.如圖④,點(diǎn)E是□ABCD的邊AB上的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是□ABCD的黃金分割線,請(qǐng)你畫一條□ABCD的黃金分割線,使它不經(jīng)過(guò)□ABCD各邊黃金分割點(diǎn).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011~2012學(xué)年江蘇蘇州八年級(jí)下期期末復(fù)習(xí)(一)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖①,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.
【小題1】研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖②所示,則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
【小題2】請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?
【小題3】研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任意作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.
【小題4】如圖④,點(diǎn)E是□ABCD的邊AB上的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是□ABCD的黃金分割線,請(qǐng)你畫一條□ABCD的黃金分割線,使它不經(jīng)過(guò)□ABCD各邊黃金分割點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇蘇州八年級(jí)下期期末復(fù)習(xí)(一)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖①,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

1.研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖②所示,則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

2.請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?

3.研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任意作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.

4.如圖④,點(diǎn)E是□ABCD的邊AB上的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是□ABCD的黃金分割線,請(qǐng)你畫一條□ABCD的黃金分割線,使它不經(jīng)過(guò)□ABCD各邊黃金分割點(diǎn).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案