(2012•樂山)如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為
2

其中正確結(jié)論的個數(shù)是(  )
分析:①作常規(guī)輔助線連接CD,由SAS定理可證△CDF和△ADE全等,從而可證∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;
②當E為AC中點,F(xiàn)為BC中點時,四邊形CEDF為正方形;
③由割補法可知四邊形CEDF的面積保持不變;
④△DEF是等腰直角三角形,
2
DE=EF,當DF與BC垂直,即DF最小時,F(xiàn)E取最小值2
2
,此時點C到線段EF的最大距離.
解答:解:①連接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵AE=CF,
∴△ADE≌△CDF;
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.故此選項正確;

②當E、F分別為AC、BC中點時,四邊形CDFE是正方形,故此選項錯誤;

③如圖2所示,分別過點D,作DM⊥AC,DN⊥BC,于點M,N,
可以利用割補法可知四邊形CEDF的面積等于正方形CMDN面積,故面積保持不變;故此選項錯誤;

④△DEF是等腰直角三角形,
2
DE=EF,
當EF∥AB時,∵AE=CF,
∴E,F(xiàn)分別是AC,BC的中點,故EF是△ABC的中位線,
∴EF取最小值
22+22
=2
2
,∵CE=CF=2,∴此時點C到線段EF的最大距離為
1
2
EF=
2
.故此選項正確;
故正確的有2個,
故選:B.
點評:此題主要考查了全等三角形的判定與性質(zhì)以及正方形、等腰三角形、直角三角形性質(zhì)等知識,根據(jù)圖形利用割補法可知四邊形CEDF的面積等于正方形CMDN面積是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•樂山)如圖,A、B兩點在數(shù)軸上表示的數(shù)分別為a、b,下列式子成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•樂山)如圖,⊙O是四邊形ABCD的內(nèi)切圓,E、F、G、H是切點,點P是優(yōu)弧
EFH
上異于E、H的點.若∠A=50°,則∠EPH=
65°
65°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•樂山)如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•樂山)如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距20
3
千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):
2
≈1.414
3
≈1.732

查看答案和解析>>

同步練習冊答案