20、如圖,四邊形ABCD是長方形.
(1)作△ABC關于直線AC對稱的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說明理由.
分析:(1)根據軸對稱的性質找到各點的對稱點,然后順次連接即可.
(2)根據軸對稱的性質可得出三角形的邊長的關系,從而可判斷出答案.
解答:解:(1)如圖,

△ABC關于直線AC對稱的圖形為△ACE.
(2)△ACE與△ACD重疊部分為△OAC是等腰三角形.

∵△ABC關于直線AC對稱的圖形為△AC,
∴△ABC≌△ACE,
∴∠D=∠B=∠E=90°,
AD=BC=EC,又AC=AC,
∴△ADC≌△AEC,
∴∠OAC=∠OCA,
∴OA=OC,即△OAC是等腰三角形.
點評:本題考查了軸對稱作圖及三角形形狀的證明的知識,難度較大,注意基本知識的掌握是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案