如圖所示,點(diǎn)P表示廣場上的一盞照明燈.

(1)請你在圖中畫出小敏在照明燈P照射下的影子(用線段表示);

(2)若小麗到燈柱MO的距離為4.5米,照明燈P到燈柱的距離為1.5米,小麗目測照明燈P的仰角為55°,她的目高QB為1.6米,試求照明燈P到地面的距離(結(jié)果精確到0.1米).(參考數(shù)據(jù):tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)

答案:
解析:

  (1)如圖線段AC是小敏的影子.(2分)

  (2)過點(diǎn)QQEMO于點(diǎn)E,

  過點(diǎn)PPFAB于點(diǎn)F,交EQ于點(diǎn)D,

  則PFEQ.(3分)

  在Rt△PDQ中,∠PQD=55°,

  DQEQED

 。4.5-1.5

  =3(米).(4分)

  ∵tan55°=,(5分)

  ∴PDDQ·tan55°≈4.3(米).(6分)

  ∵DFQB=1.6米,

  ∴PFPDDF=4.3+1.6=5.9(米).(7分)

  答:照明燈到地面的距離約為5.9米.(8分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【問題提出】如何把n個正方形拼接成一個大正方形?
為解決上面問題,我們先從最基本,最特殊的情形入手.對于邊長為a的兩個正方形ABCD和EFGH,如何把它們拼接成一個正方形?
【問題解決】對于邊長為a的兩個正方形ABCD和EFGH,按圖所示的方式擺放,在沿虛線BD,EG剪開后,可以按圖中所示的移動方式拼接為圖中的四邊形BNED.從拼接的過程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
【類比應(yīng)用】
對于邊長分別為a,b(a>b)的兩個正方形ABCD和EFGH,按圖所示的方式擺放,連接DE,過點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過點(diǎn)M作MN⊥DM,過點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N.明四邊形MNED是正方形,并請你用含a,b的代數(shù)式表示正方形MNED的面積;
②如圖,將正方形ABCD和正方形EFGH沿虛線剪開后,能夠拼接為正方形MNED,請簡略說明你的拼接方法(類比如圖,用數(shù)字表示對應(yīng)的圖形直接畫在圖中).
【拓廣延伸】對于n(n是大于2的自然數(shù))個任意的正方形,能否通過若干次拼接,將其拼接成為一個正方形?請簡要說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案