如圖,正方形ABCD內(nèi)接于⊙O,⊙O的直徑為分米,若在這個(gè)圓面上隨意拋一粒豆子,則豆子落在正方形ABCD內(nèi)的概率是( )

A.
B.
C.
D.
【答案】分析:在這個(gè)圓面上隨意拋一粒豆子,落在圓內(nèi)每一個(gè)地方是均等的,因此計(jì)算出正方形和圓的面積,利用幾何概率的計(jì)算方法解答即可.
解答:解:因?yàn)椤袿的直徑為分米,則半徑為分米,⊙O的面積為π(2=平方分米;
正方形的邊長(zhǎng)為=1分米,面積為1平方分米;
因?yàn)槎棺勇湓趫A內(nèi)每一個(gè)地方是均等的,
所以P(豆子落在正方形ABCD內(nèi))==
故選A.
點(diǎn)評(píng):此題主要考查幾何概率的意義:一般地,對(duì)于古典概型,如果試驗(yàn)的基本事件為n,隨機(jī)事件A所包含的基本事件數(shù)為m,我們就用來(lái)描述事件A出現(xiàn)的可能性大小,稱(chēng)它為事件A的概率,記作P(A),即有 P(A)=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線(xiàn)段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線(xiàn)交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案