如圖,在正方形ABCD中,點E、F分別在BC、CD上移動,但A到EF的距離AH始終保持與AB長相等,問在E、F移動過程中:
(1)∠EAF的大小是否有變化?請說明理由.
(2)△ECF的周長是否有變化?請說明理由.

【答案】分析:(1)根據(jù)題意,求證△BAE≌△HAE,△HAF≌△DAF,然后根據(jù)全等三角形的性質求∠EAF=∠BAD.
(2)根據(jù)(1)的求證結果,用等量代換來計算△ECF的周長,如果結果是定量,就說明△ECF的周長沒有變化,反之,△ECF的周長有變化.
解答:解:(1)∠EAF的大小沒有變化.理由如下:
根據(jù)題意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°,
∵AE=AE,
∴Rt△BAE≌Rt△HAE(HL),
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF=∠EAH+∠FAH=∠BAH+∠HAD=(∠BAH+∠HAD)=∠BAD,
又∵∠BAD=90°,
∴∠EAF=45°,
∴∠EAF的大小沒有變化.

(2)△ECF的周長沒有變化.理由如下:
∵由(1)知,Rt△BAE≌Rt△HAE,△HAF≌△DAF,
∴BE=HE,HF=DF,
∴C△EFC=EF+EC+FC=EB+DF+EC+FC=2BC,
∴△ECF的周長沒有變化.
點評:解答本題的關鍵是利用正方形的性質和全等三角形的判定定理來判定三角形全等,再根據(jù)三角形全等的性質來解答問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案