【題目】如圖,在矩形ABCD中,點(diǎn)EAD上,且BEBC.

(1)EC平分∠BED嗎?證明你的結(jié)論.

(2)AB1,∠ABE45°,求BC的長(zhǎng).

【答案】(1)EC平分∠BED,證明見(jiàn)解析;(2)BC=.

【解析】

(1)由矩形的性質(zhì)得出∠DEC=∠ECB,由BEBC得出∠ECB=∠BEC,即可得出∠DEC=∠BEC,結(jié)論得證;

(2)求出AEAB1,根據(jù)勾股定理求出BE即可.

解:(1)EC平分∠BED,證明如下:

∵四邊形ABCD是矩形,

ADBC

∴∠DEC=∠BCE,

BEBC

∴∠BEC=∠BCE

∴∠BEC=∠DEC,

EC平分∠BED.

(2)∵四邊形ABCD是矩形,

∴∠A90°,

∵∠ABE45°,

∴∠ABEAEB45°,

AEAB1,

由勾股定理得:,

BCBE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了解全校名學(xué)生雙休日在家最愛(ài)選擇的電視頻道情況,問(wèn)卷要求每名學(xué)生從“新聞,體育,電影,科教,其他”五項(xiàng)中選擇其一,隨機(jī)抽取了部分學(xué)生,調(diào)查結(jié)果繪制成未完成的統(tǒng)計(jì)圖表如下:

頻道

新聞

體育

電影

科教

其他

人數(shù)

求調(diào)查的學(xué)生人數(shù)及統(tǒng)計(jì)圖表中的值;

求選擇其他頻道在統(tǒng)計(jì)圖中對(duì)應(yīng)扇形的圓心角的度數(shù);

求全校最愛(ài)選擇電影頻道的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為5,點(diǎn)AB、C都在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D

1)如圖1,若BC為⊙O的直徑,AB6,求ACBD的長(zhǎng);

2)如圖2,若∠CAB60°,過(guò)圓心OOEBD于點(diǎn)E,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形中,,動(dòng)點(diǎn)點(diǎn)出發(fā),以2cm/s的速度沿向終點(diǎn)勻速運(yùn)動(dòng),連接,以為直徑作⊙分別交于點(diǎn),連接.設(shè)運(yùn)動(dòng)時(shí)間為s .

(1)如圖①,若點(diǎn)的中點(diǎn),求證:;

(2)如圖②,若⊙相切于點(diǎn),求的值;

(3)是以為腰的等腰三角形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀)x與代數(shù)式x2+2x1的部分對(duì)應(yīng)值如表:

x

3

2

1

0

1

x2+2x1

2

1

2

1

2

可知:當(dāng)x=﹣3時(shí),x2+2x120,當(dāng)x=﹣2時(shí),x2+2x1=﹣10,所以方程x2+2x10的一個(gè)解在﹣3和﹣2之間.

(理解)(1)方程x2+2x10的另一個(gè)解在兩個(gè)連續(xù)整數(shù)      之間.

(應(yīng)用)(2)若關(guān)于x的一元二次方程﹣x2+2x+m0的一個(gè)解在12之間,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)A(0,8)、點(diǎn)B(2,a)在直線y=﹣2x+b上,反比例函數(shù)y(x0)的圖象經(jīng)過(guò)點(diǎn)B.

(1)ak的值;

(2)將線段AB向右平移m個(gè)單位長(zhǎng)度(m0),得到對(duì)應(yīng)線段CD,連接AC、BD.

①如圖2,當(dāng)m3時(shí),過(guò)DDFx軸于點(diǎn)F,交反比例函數(shù)圖象于點(diǎn)E,求E點(diǎn)的坐標(biāo);

②在線段AB運(yùn)動(dòng)過(guò)程中,連接BC,若△BCD是等腰三形,求所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)箱子中有三個(gè)分別標(biāo)有數(shù)字1,2,3的材質(zhì)、大小都相同的小球,從中任意摸出一個(gè)小球,記下小球的數(shù)字x后,放回箱中并搖勻,再摸出一個(gè)小球,又記下小球的數(shù)字y。以先后記下的兩個(gè)數(shù)字(x,y)作為點(diǎn)P的坐標(biāo)。

1)求點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)的和為4的概率,并畫出樹(shù)狀圖或列表;

2)求點(diǎn)P落在以坐標(biāo)原點(diǎn)為圓心、為半徑的圓的內(nèi)部的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線ymxm為常數(shù))與雙曲線yk為常數(shù))相交于A、B兩點(diǎn).

1)若點(diǎn)A的橫坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為﹣4.直接寫出:k   ,m   ,mx的解集為   

2)若雙曲線yk為常數(shù))的圖象上有點(diǎn)Cx1,y1),Dx2,y2),當(dāng)x1x2時(shí),比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線.

已知:PO外一點(diǎn).

求作:經(jīng)過(guò)點(diǎn)PO的切線.

小敏的作法如下:

如圖,

1)連接OP,作線段OP的垂直平分線MNOP于點(diǎn)C

2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交OA,B兩點(diǎn);

3)作直線PA,PB.所以直線PAPB就是所求作的切線.

老師認(rèn)為小敏的作法正確.

請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是_____;由此可證明直線PA,PB都是O的切線,其依據(jù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案