如圖,用長(zhǎng)20m的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎么圍才能使園子的面積最大?最大面積是多少?
假設(shè)長(zhǎng)方形園子左、右兩邊邊長(zhǎng)為am,下邊邊長(zhǎng)為bm,
則由題目可得:
2a+b=20,
S=a•b=a•(20-2a)=-2a2+20a,
配方后可得:S=-2(a-5)2+50,
所以當(dāng)a=5時(shí)有最大面積為:50m2
答:當(dāng)a=5時(shí)有最大面積為:50m2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將直線y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過B(-3,0)及y軸上的C點(diǎn).若拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),且經(jīng)過點(diǎn)C,其對(duì)稱軸與直線BC交于點(diǎn)E,與x軸交于點(diǎn)F.
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,若∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形EFOC分成面積相等的兩部分?若存在,請(qǐng)求出直線CM的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連接OA.
(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點(diǎn)A.
①求c的值;
②將該拋物線向下平移m個(gè)單位,使頂點(diǎn)落在線段AO上,請(qǐng)直接寫出相應(yīng)的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象如圖所示.
(1)求二次函數(shù)的解析式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B,點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為s,求s與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)將△OAC補(bǔ)成矩形,使上△OAC的兩個(gè)頂點(diǎn)成為矩形一邊的兩個(gè)頂點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,試直接寫出矩形的未知的頂點(diǎn)坐標(biāo)(不需要計(jì)算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,二次函數(shù)y=ax2+bx+c的圖象過A、B、C三點(diǎn)
(1)觀察圖象寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=a(x+2)2+c與x軸交于A、B兩點(diǎn),與y軸負(fù)半軸交于點(diǎn)C,已知點(diǎn)A(-1,0),OB=OC.
(1)求此拋物線的解析式;
(2)若點(diǎn)M是拋物線上一個(gè)動(dòng)點(diǎn),且S△BCM=S△ABC,求點(diǎn)M的坐標(biāo);
(3)Q為直線y=-x-4上一點(diǎn),在此拋物線的對(duì)稱軸是否存在一點(diǎn)P,使得∠APB=2∠AQB,且這樣的Q點(diǎn)有且只有一個(gè)?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),且分別與y軸交于點(diǎn)D、E.過點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)-3<x<1時(shí),隨著x的增大,y1-y2的值先增大后減;
④四邊形AECD為正方形.
其中正確的是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙M與y軸的正半軸相切于點(diǎn)C,與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x2>x1>0,拋物線y=
1
2
(x2-5x+2m)經(jīng)過A、B、C三點(diǎn).
(1)求m的值;
(2)求sin∠AMB的值;
(3)在圖中的曲線上是否存在點(diǎn)P,使以P、A、C為頂點(diǎn)的三角形與△COA相似?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案