【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE,此時點C恰好在線段DE上,若∠B=40°,∠CAE=60°,則∠DAC的度數(shù)為( )
A.15°
B.20°
C.25°
D.30°
【答案】B
【解析】解:由旋轉(zhuǎn)的性質(zhì)得:△ADE≌△ABC, ∴∠D=∠B=40°,AE=AC,
∵∠CAE=60°,
∴△ACE是等邊三角形,
∴∠ACE=∠E=60°,
∴∠DAE=180°﹣∠E﹣∠D=80DU
= (180°﹣∠CAE)= (180°﹣60°)=80°,
∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;
故選:B.
由旋轉(zhuǎn)的性質(zhì)得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,證出△ACE是等邊三角形,得出∠ACE=∠E=60°,由三角形內(nèi)角和定理求出∠DAE的度數(shù),即可得出結(jié)果.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1cm,AC是對角線,AE平分∠BAC,EF⊥AC于F.
(1)求證:BE=EF.
(2)求tan∠EAF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若10m=5,10n=3,則102m+3n= .
【答案】675.
【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,
故答案為:675.
點睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運算方法,可得102m×103n=(10m)2×(10n)3,最后把10m=5,10n=2代入化簡后的算式,求出102m+3n的值是多少即可.
【題型】填空題
【結(jié)束】
17
【題目】A、B兩地相距450千米,甲、乙兩車分別從A、B兩地同時出發(fā),相向而行.已知甲車的速度為100千米/時,乙車的速度為80千米/時,___________小時后兩車相距30千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c過點A(﹣3,0),對稱軸為x=﹣1.給出四個結(jié)論:①b2>4ac,②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結(jié)論是( )
A.②④
B.①④
C.②③
D.①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:(x-2)-(4x-1)=4.
【答案】x=-.
【解析】
方程兩邊都乘以6去分母后,去括號,移項合并,將x系數(shù)化為1即可求出解.
去分母得:3(x-2)-2(4x-1)=24,
去括號得:3x-6-8x+2=24,
移項合并得:-5x=28,
解得:x=-.
【點睛】
此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,將x系數(shù)化為1,求出解.
【題型】解答題
【結(jié)束】
22
【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;
(2)已知2x-y-4=0,求9x27y÷81y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1是由5個完全相同的正方體搭成的幾何體,現(xiàn)將標有E的正方體平移至圖2所示的位置,下列說法中正確的是( )
①左、右兩個幾何體的主視圖相同
②左、右兩個幾何體的俯視圖相同
③左、右兩個幾何體的左視圖相同.
A.①②③
B.②③
C.①②
D.①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,AB=2,現(xiàn)將一塊三角板的直角頂點放在AB的中點D處,兩直角邊分別與直線AC,直線BC相交于點E,F(xiàn),我們把DE⊥AC時的位置定為起始位置(如圖1),將三角板繞點D順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°).
(1)如圖2,在旋轉(zhuǎn)過程中,當點E在線段AC上時,試判別△DEF的形狀,并說明理由;
(2)設(shè)直線ED交直線BC于點G,在旋轉(zhuǎn)過程中,是否存在點G,使得△EFG為等腰三角形?若存在,求出CG的長,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com