用一條寬相等的足夠長的紙條,打一個結(jié),如下圖(1)所示,然后輕輕拉緊、壓平就可以得到如圖(2)所示的正五邊形ABCDE,其中∠BAC=    度.
18°

試題分析:由題可知,,五邊形ABCDE是正五邊形,每個角的度數(shù)是180°×(5-1)=720°,其中∠ABC=144°,因為AB=BC,所以∠BAC=∠BCA=(180°-144°)÷2=18°.
點評:該題是?碱},主要考查學生對多邊形內(nèi)角和公式的理解和應用,要求學生熟記。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,為正方形上任一點,于點,在 的延長線上取點,使,連接,.

(1)求證:;
(2)的平分線交點,連接,求證:;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個四邊形中,它的最大的內(nèi)角不能小于     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間t(s),解答下列各問題:

(1)求的面積;
(2)當t為何值是,△PBQ是直角三角形?
(3)設四邊形APQC的面積為y(),求y與t的關系式;是否存在某一時刻t,使四邊形APQC的面積是面積的三分之二?如果存在,求出t的值;不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若一個三角形三個內(nèi)角度數(shù)的比為1︰4︰3,那么這個三角形是  (    。
A.銳角三角形B.直角三角形 C.鈍角三角形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一、閱讀理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C為直角,則
(2)若∠C為為銳角,則的關系為:
(3)若∠C為鈍角,試推導的關系.
二、探究問題:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是鈍角三角形,求第三邊c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖(1),在△ABC中,∠ABC、∠ACB的平分線相交于點O,∠A=40°,求∠BOC的度數(shù)。

(2)如圖(2),△DEF兩個外角的平分線相交于點G,∠D=40°,求∠EGF的度數(shù)。

(3)由(1)、(2)可以發(fā)現(xiàn)∠BOC與∠EGF有怎樣的數(shù)量關系?
設∠A=∠D=n°,∠BOC與∠EGF是否還具有這樣的數(shù)量關系?
為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,AD⊥BC于點D,BD=CD,若BC=6,AD=5,
則圖中陰影部分的面積為 (      )
A.30B.15
C.7.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知Rt△ABC,∠ACB=90°,AC=BC=4,點O是AB中點,點P、Q分別從點A、C出發(fā),沿AC、CB以每秒1個單位的速度運動,到達點C、B后停止。連結(jié)PQ、點D是PQ中點,連結(jié)CD并延長交AB于點E.

(1)試說明:△POQ是等腰直角三角形;
(2)設點P、Q運動的時間為t秒,試用含t的代數(shù)式來表示△CPQ的面積S,并求出
S的最大值;
(3)如圖2,點P在運動過程中,連結(jié)EP、EQ,問四邊形PEQC是什么四邊形,并說明理由;
(4)求點D運動的路徑長(直接寫出結(jié)果).

查看答案和解析>>

同步練習冊答案