(2012•牡丹江)某校為了更好地開展球類運(yùn)動(dòng),體育組決定用1600元購進(jìn)足球8個(gè)和籃球14個(gè),并且籃球的單價(jià)比足球的單價(jià)多20元,請(qǐng)解答下列問題:
(1)求出足球和籃球的單價(jià);
(2)若學(xué)校欲用不超過3240元,且不少于3200元再次購進(jìn)兩種球50個(gè),求出有哪幾種購買方案?
(3)在(2)的條件下,若已知足球的進(jìn)價(jià)為50元,籃球的進(jìn)價(jià)為65元,則在第二次購買方案中,哪種方案商家獲利最多?
分析:(1)設(shè)足球的單價(jià)為x元,則籃球的單價(jià)為(x+20)元,則根據(jù)所花的錢數(shù)為1600元,可得出方程,解出即可;
(2)根據(jù)題意所述的不等關(guān)系:不超過3240元,且不少于3200元,等量關(guān)系:兩種球共50個(gè),可得出不等式組,解出即可;
(3)分別求出三種方案的利潤,繼而比較可得出答案.
解答:解:(1)設(shè)足球的單價(jià)為x元,則籃球的單價(jià)為(x+20)元,
根據(jù)題意,得8x+14(x+20)=1600,
解得:x=60,x+20=80.
即足球的單價(jià)為60元,則籃球的單價(jià)為80元;

(2)設(shè)購進(jìn)足球y個(gè),則購進(jìn)籃球(50-y)個(gè).
根據(jù)題意,得
60y+80(50-y)≥3200
60y+80(50-y)≤3240
,
解得:
y≤40
y≥38
,
∵y為整數(shù),
∴y=38,39,40.
當(dāng)y=38,50-y=12;
當(dāng)y=39,50-y=11;
當(dāng)y=40,50-y=10.
故有三種方案:
方案一:購進(jìn)足球38個(gè),則購進(jìn)籃球12個(gè);
方案二:購進(jìn)足球39個(gè),則購進(jìn)籃球11個(gè);
方案三:購進(jìn)足球40個(gè),則購進(jìn)籃球10個(gè);

(3)商家售方案一的利潤:38(60-50)+12(80-65)=560(元);
商家售方案二的利潤:39(60-50)+11(80-65)=555(元);
商家售方案三的利潤:40(60-50)+10(80-65)=550(元).
故第二次購買方案中,方案一商家獲利最多.
點(diǎn)評(píng):此題考查了一元一次方程及一元一次不等式組的應(yīng)用,解答本題的關(guān)鍵是仔細(xì)審題,根據(jù)題意所述的等量關(guān)系及不等關(guān)系,列出不等式,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)如圖①,△ABC中.AB=AC,P為底邊BC上一點(diǎn),PE⊥AB,PF⊥AC,CH⊥AB,垂足分別為E、F、H.易證PE+PF=CH.證明過程如下:
如圖①,連接AP.
∵PE⊥AB,PF⊥AC,CH⊥AB,
∴S△ABP=
1
2
AB•PE,S△ACP=
1
2
AC•PF,S△ABC=
1
2
AB•CH.
又∵S△ABP+S△ACP=S△ABC
1
2
AB•PE+
1
2
AC•PF=
1
2
AB•CH.
∵AB=AC,
∴PE+PF=CH.
(1)如圖②,P為BC延長線上的點(diǎn)時(shí),其它條件不變,PE、PF、CH又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并加以證明:
(2)填空:若∠A=30°,△ABC的面積為49,點(diǎn)P在直線BC上,且P到直線AC的距離為PF,當(dāng)PF=3時(shí),則AB邊上的高CH=
7
7
.點(diǎn)P到AB邊的距離PE=
4或10
4或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)如圖.點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE.請(qǐng)寫出圖中的全等三角形
△ABD≌△ACE(答案不唯一)
△ABD≌△ACE(答案不唯一)
(寫出一對(duì)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)已知等腰三角形周長為20,則底邊長y關(guān)于腰長x的函數(shù)圖象是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)如圖,拋物線y=x2+bx+c經(jīng)過點(diǎn)(1,-4)和(-2,5),請(qǐng)解答下列問題:
(1)求拋物線的解析式;
(2)若與x軸的兩個(gè)交點(diǎn)為A,B,與y軸交于點(diǎn)C.在該拋物線上是否存在點(diǎn)D,使得△ABC與△ABD全等?若存在,求出D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由
注:拋物線y=ax2+bx+c的對(duì)稱軸是x=-
b2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)如圖,OA、OB的長分別是關(guān)于x的方程x2-12x+32=0的兩根,且OA>OB.請(qǐng)解答下列問題:
(1)求直線AB的解析式;
(2)若P為AB上一點(diǎn),且
AP
PB
=
1
3
,求過點(diǎn)P的反比例函數(shù)的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使得以A、P、O、Q為頂點(diǎn)的四邊形是等腰梯形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案