如圖1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點(diǎn)M為射線AE上任意一點(diǎn)(不與A重合),連接CM,將線段CM繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得到線段CN,直線NB分別交直線CM、射線AE于點(diǎn)F、D.
(1)直接寫(xiě)出∠NDE的度數(shù);
(2)如圖2、圖3,當(dāng)∠EAC為銳角或鈍角時(shí),其他條件不變,(1)中的結(jié)論是否發(fā)生變化?如果不變,選取其中一種情況加以證明;如果變化,請(qǐng)說(shuō)明理由;
(3)如圖4,若∠EAC=15°,∠ACM=60°,直線CM與AB交于G,BD= ,其他條件不變,求線段AM的長(zhǎng).
本題考查的是矩形的判定和性質(zhì)以及三角形全等的判定和性質(zhì),正確作出輔助線、利用方程的思想是解題的關(guān)鍵,注意旋轉(zhuǎn)的性質(zhì)的靈活運(yùn)用. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
命題“關(guān)于x的一元二次方程,必有實(shí)數(shù)解.”是假命題.則在下列選項(xiàng)中,可以作為反例的是( 。
A.b=﹣3 B.b=﹣2 C.b=﹣1 D.b=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
理解:數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過(guò)思考、討論、交流,得到以下思路:
思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===2﹣.
思路二 利用科普書(shū)上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請(qǐng)解決下列問(wèn)題(上述思路僅供參考).
(1)類比:求出tan75°的值;
(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測(cè)得A,C兩點(diǎn)間距離為60米,從A測(cè)得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線y=x﹣1與雙曲線y=交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)的圖象與y軸的交點(diǎn)為C,與x軸正半軸的交點(diǎn)為A.且.
(1)求二次函數(shù)的解析式;
(2)P為二次函數(shù)圖象的頂點(diǎn),Q為其對(duì)稱軸上的一點(diǎn),QC平分∠PQO,求Q點(diǎn)坐標(biāo);
(3)是否存在實(shí)數(shù),當(dāng)時(shí),y的取值范圍為.若存在,直接寫(xiě)出x1,x2的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com