【題目】如圖,在中,的平分線相交于點(diǎn),過點(diǎn)于點(diǎn),交于點(diǎn),過點(diǎn)于點(diǎn),某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,探索出如下結(jié)論,其中錯(cuò)誤的是(

A.B.點(diǎn)各邊的距離相等

C.D.設(shè),,則

【答案】C

【解析】

利用角平分線的性質(zhì)、等腰三角形的判定與性質(zhì)逐一判定即可.

∵在△ABC中,∠ABC∠ACB的平分線相交于點(diǎn)O

∴∠OBC=ABC,∠OCB=ACBA+ABC+ACB=180°,

∴∠OBC+OCB=90°-A

∴∠BOC=180°-OBC+OCB=90°+A,故C錯(cuò)誤;

∵∠EBO=CBO,∠FCO=∠BCO,

∴∠EBO=EOB,∠FCO=∠FOC

BE=OE,CF=OF

EF=EO+OF=BE+CFA正確;

由已知,得點(diǎn)O的內(nèi)心,到各邊的距離相等,故B正確;

OMAB,交ABM,連接OA,如圖所示:

∵在△ABC中,∠ABC∠ACB的平分線相交于點(diǎn)O

OM=

,故D選項(xiàng)正確;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車庫出口處設(shè)置有兩段式欄桿,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的連接點(diǎn),當(dāng)車輛經(jīng)過時(shí),欄桿AEF升起后的位置如圖1所示(圖2為其幾何圖形).其中ABBC,DCBC,EFBC,EAB=150°,AB=AE=1.2m,BC=2.4m.

(1)求圖2中點(diǎn)E到地面的高度(即EH的長.≈1.73,結(jié)果精確到0.01m,欄桿寬度忽略不計(jì));

(2)若一輛廂式貨車的寬度和高度均為2m,這輛車能否駛?cè)朐撥噹??qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市準(zhǔn)備購進(jìn)甲、乙兩種品牌的文具盒,甲、乙兩種玩具盒的進(jìn)價(jià)和售價(jià)如下表,預(yù)計(jì)購進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌玩具盒數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.

進(jìn)價(jià)(元)

15

30

售價(jià)(元)

20

38

1yx之間的函數(shù)關(guān)系式是   ;

2)若超市準(zhǔn)備用不超過6000元購進(jìn)甲、乙兩種文具盒,則至少購進(jìn)多少個(gè)甲種文具盒?

3)在(2)的條件下,寫出銷售所得的利潤W(元)與x(個(gè))之間的關(guān)系式,并求出獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于點(diǎn)D,DEABE.若△ADE的周長為8cmAB_____ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形DEFG都是正方形,設(shè)AB =a, DG = b(a> b)

1)寫出AG的長度(用含字母ab的式子表示);

2)觀察圖形,請(qǐng)你用兩種不同的方法表示圖形中陰影部分的面積,此時(shí),你能獲得一個(gè)因式分解公式,請(qǐng)將這個(gè)公式寫出來;

3)如果正方形ABCD的邊長比正方形DEFG的邊長多2cm,它們的面積相差20cm2,試?yán)?/span>(2)中的公式,a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在任意四邊形ABCD中,M,N,P,Q分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形MNPQ的形狀,以下結(jié)論中,錯(cuò)誤的是  

A. 當(dāng)M,N,P,Q是各邊中點(diǎn),四邊MNPQ一定為平行四邊形

B. 當(dāng)M,NP,Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為正方形

C. 當(dāng)MN、PQ是各邊中點(diǎn),且時(shí),四邊形MNPQ為菱形

D. 當(dāng)M,N、P、Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EAD上一點(diǎn),連接BEFBE中點(diǎn),且AF=BF,

1)求證:四邊形ABCD為矩形;

2)過點(diǎn)FFGBE,垂足為F,交BC于點(diǎn)G,若BE=BC,SBFG=5,CD=4,求CG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案