精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一塊含有30°角的直角三角板ABC,在水平桌面上繞點C按順時針方向旋轉到A′B′C′的位置,若BC=12cm,則頂點A從開始到結束所經過的路徑長為 cm.

【答案】16π
【解析】解:∵∠BAC=30°,∠ABC=90°,且BC=12,
∴∠ACA′=∠BAC+∠ABC=120°,AC=2BC=24cm,
由題意知點A所經過的路徑是以點C為圓心、CA為半徑的圓中圓心角為120°所對弧長,
∴其路徑長為 =16π(cm),
所以答案是:16π.
【考點精析】認真審題,首先需要了解旋轉的性質(①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,已知MN⊥PQ于點O,點A、 是以MN為軸的對稱點,而點 、A是以PQ為軸的對稱點,求證:點 是以點O為對稱中心的對稱點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著北京申辦冬奧會的成功,愈來愈多的同學開始關注我國的冰雪體育項目. 小健從新聞中了解到:在2018年平昌冬奧會的短道速滑男子500米決賽中,中國選手武大靖以39秒584的成績打破世界紀錄,收獲中國男子短道速滑隊在冬奧會上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績再破世界紀錄. 于是小健對同學們說:“2022年北京冬奧會上武大靖再獲金牌的可能性大小是.”你認為小健的說法_________(填“合理”或“不合理”),理由是__________________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:

2018年10月24日港珠澳大橋正式開通,它是中國建設史上里程最長、投資最多、施工難度最大的跨海橋梁項目,體現(xiàn)了我國逢山開路、遇水架橋的奮斗精神,體現(xiàn)了我國綜合國力、自主創(chuàng)新能力,體現(xiàn)了我國勇創(chuàng)世界一流的民族志氣. 港珠澳大橋全長55公里,跨越伶仃洋,東接香港特別行政區(qū),西接廣東省珠海市和澳門特別行政區(qū),首次實現(xiàn)了珠海、澳門與香港的跨海陸路連接,極大地縮短了三地間的距離. 通車前,小亮媽媽駕車從香港到珠海的陸路車程大約220公里,如果行駛的平均速度不變,港珠澳大橋通車后,小亮媽媽駕車從香港到珠海所用的行駛時間比原來縮短了2小時15分鐘,求小亮媽媽原來駕車從香港到珠海需要多長時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的對角線長為8 ,E為AB上一點,若EF⊥AC于F,EG⊥BD于G,則EF+EG=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABCD,EF分別交AB、CDG、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數是( 。

A. 120° B. 125° C. 135° D. 145°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運貨噸,輛大貨車與輛小貨車一次可以運貨噸.

(1)求輛大貨車和輛小貨車一次可以分別運多少噸;

(2)現(xiàn)有噸貨物需要運輸,貨運公司擬安排大小貨車共輛把全部貨物一次運完.求至少需要安排幾輛大貨車?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,點P從點A出發(fā),以1cm/s的速度向點D運動;點Q從點C同時出發(fā),以3cm/s的速度向點B運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).

(1)當t為何值時,PQ∥CD?
(2)當t為何值時,PQ=CD?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數是 40人.請你根據以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數.

查看答案和解析>>

同步練習冊答案