【題目】已知:如圖,在△ABC中,D是AC的中點(diǎn),E是線段BC延長(zhǎng)線上一點(diǎn),過點(diǎn)A作BE的平行線與線段ED的延長(zhǎng)線交于點(diǎn)F,連接AE,CF.
(1)求證:AF=CE;
(2)若AC=EF,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論.
【答案】(1)詳見解析;(2)四邊形AFCE是矩形,證明詳見解析.
【解析】
(1)可通過全等三角形來證明簡(jiǎn)單的線段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不難得出兩三角形全等,進(jìn)而可得出AF=CE.
(2)需先證明四邊形AFCE是平行四邊形,那么對(duì)角線相等的平行四邊形是矩形.
(1)證明:在△ADF和△CDE中,
∵AF∥BE,
∴∠FAD=∠ECD.
又∵D是AC的中點(diǎn),
∴AD=CD.
∵∠ADF=∠CDE,
∴△ADF≌△CDE.
∴AF=CE.
(2)解:若AC=EF,則四邊形AFCE是矩形.
證明:由(1)知:AF=CE,AF∥CE,
∴四邊形AFCE是平行四邊形.
又∵AC=EF,
∴平行四邊形AFCE是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將二次函數(shù)y= (x-2)2+1的圖像沿y軸向上平移得到一條新的二次函數(shù)圖像,其中A(1,m),B(4,n)平移后對(duì)應(yīng)點(diǎn)分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數(shù)對(duì)應(yīng)的函數(shù)表達(dá)是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示的一張矩形紙片, 將紙片折疊一次,使點(diǎn)A與C重合,再展開, 折痕EF交AD邊于E,交BC邊于F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)在線段AC上是否存在一點(diǎn)P,使得?若存在,請(qǐng)說明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),延長(zhǎng)交射線于點(diǎn),連拉.
(1)求證:四邊形是平行四邊形。
(2)填空:
①當(dāng)的值為_______________時(shí),四邊形是矩形;
②當(dāng)的值為_______________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC以2 cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1 cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=__________時(shí),△CPQ與△CBA相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向B以的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC向C以的速度移動(dòng)(不與點(diǎn)C重合),如果P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為,四邊形APQC的面積為.
(1)求y與x之間的函數(shù)關(guān)系式;寫出自變量x的取值范圍;
(2)當(dāng)四邊形APQC的面積等于時(shí),求x的值;
(3)四邊形APQC的面積能否等于?若能,求出運(yùn)動(dòng)的時(shí)間,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線y=a(x2+2x-3)(a≠0)與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且OC=OB.
(1)直接寫出點(diǎn)B的坐標(biāo)是( , ),并求拋物線的解析式;
(2)設(shè)點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸是直線l,連接BD,線段OC上的點(diǎn)E關(guān)于直線l的對(duì)稱點(diǎn)E'恰好在線段BD上,求點(diǎn)E的坐標(biāo);
(3)若點(diǎn)F為拋物線第二象限圖象上的一個(gè)動(dòng)點(diǎn),連接BF,CF,當(dāng)△BCF的面積是△ABC面積的一半時(shí),求此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com