如圖,△ABC中,∠C=90°,tan∠A=
4
5
,D為AC上一點,BC=CD=4,求△ABD的周長.
在Rt△BCD中,BC=CD=4,
根據(jù)勾股定理得:BD=
BC2+CD2
=4
2

在Rt△ABC中,tanA=
BC
AC
,tanA=
4
5
,
∴AC=
BC
tanA
=5,AD=AC-CD=5-4=1,
根據(jù)勾股定理得:AB=
AC2+BC2
=
41
,
則△ABD的周長為BD+AD+AB=4
2
+1+
41
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)解不等式組
x-3≤0
5(x-1)+6>4x
并把解集在數(shù)軸上表示出來;

(2)如圖,已知墻高AB為6.5米,將一長為6米的梯子CD斜靠在墻面,梯子與地面所成的角∠BCD=55°,此時梯子的頂端與墻頂?shù)木嚯xAD約為多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,B,C是河岸邊兩點,A是對岸邊上一點,測得∠ABC=45°,∠ACB=60°,BC=60米,甲想從A點出發(fā)在最短的時間內(nèi)到達BC邊,若他的速度為5米/分,則他所用的最短時間為______分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

同學(xué)們在學(xué)完解直角三角形的應(yīng)用后,某合作學(xué)習(xí)小組用測傾器、皮尺測量了學(xué)校旗桿的高度,他們設(shè)計了如下方案(如圖所示):
①在測點A處安置測傾器,測得旗桿頂部M的仰角∠MCE=30°;
②量出測點A到旗桿底部N的水平距離AN=20m;
③量出測傾器的高度AC=1m.
(1)根據(jù)上述測量數(shù)據(jù),即可求出旗桿的高度MN=______.(結(jié)果可以保留根號)
(2)如果測量工具不變,請仿照上述過程,設(shè)計一個測量某小山高度(如圖)的方案.要求:
(。┰趫D中,畫出你測量小山高度MN的示意圖(標(biāo)上適當(dāng)字母);
(ⅱ)寫出你設(shè)計的方案.(測傾器的高度用h表示,其它涉及的長度用字母a、b、c…表示,涉及到的角度用α、β…表示,最后請給出計算MN的高度的式子).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,AB=AC=5,sin∠ABC=0.8,則BC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,A、B、C三個村莊在一條東西走向的公路沿線上,AB=2km.在B村的正北方向有一個D村,測得∠DAB=45°,∠DCB=28°.今將△ACD區(qū)域進行規(guī)劃,除其中面積為0.5km2的水塘外,準(zhǔn)備把剩余的一半作為綠化用地,試求綠化用地的面積.(結(jié)果精確到0.1km2,sin28°=0.4695,cos28°=0.8829,tan28°=0.5317,cot28°=1.88.8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在小山的東側(cè)A莊有一熱氣球,由于受西風(fēng)的影響,以每分鐘35m的速度沿著與水平方向成75°的方向飛行,40min時到達C處,此時氣球上的人發(fā)現(xiàn)氣球與山頂P點及小山西側(cè)的B莊在一條直線上,同時測得B莊的俯角為30°,又在A莊測得山頂P的仰角為45°.則A莊與B莊的距離為______,山高是______.(保留準(zhǔn)確值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知一商場自動扶梯的長l為10米,該自動扶梯到達的高度h為6米,自動扶梯與地面所成的角為θ,則tanθ的值等于(  )
A.
3
4
B.
4
3
C.
3
5
D.
4
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,課外活動中,小明在離旗桿AB的10米C處,用測角儀測得旗桿頂部A的仰角為40°,已知測角儀器的高CD=15米,求旗桿AB的高.(精確到0.1米)
(供選用的數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

同步練習(xí)冊答案