【題目】如圖,在等邊△ABC中, BC8,以AB為直徑的⊙O與邊ACBC分別交于點(diǎn)D、E,過點(diǎn)DDFBC,垂足為F

1)求證:DF為⊙O的切線.

2)求弧DE的長度.

3)求EF的長.

【答案】1)見解析;(2;(32

【解析】

(1)連接DO,先證出△OAD是等邊三角形,故∠ADO60°,再求出∠CDF,最后證出ODDF,利用切線的判定即可得到.DF為⊙O的切線;

2)連接OD、OE,先求出∠DOE的度數(shù),再代入弧長公式即可;

3)先求出CD的長,再求CF的長,利用EF=BC-CF-BE即可.

(1)證明:連接DO

∵△ABC是等邊三角形,

∴∠A=∠C60°,

OAOD,

∴△OAD是等邊三角形,

∴∠ADO60°,

DFBC

∴∠CDF90°﹣∠C30°,

∴∠FDO180°﹣∠ADO﹣∠CDF90°,

ODDF,

OD為半徑,

DF為⊙O的切線;

2)連接OD、OE

∵EO=OB,∠EOB=60°

∴△OBE是等邊三角形,

∴∠EOB =60°

∴∠DOE=180°-∠EOB-AOD=60°

∵AB=BC=8

的半徑為4

3)解:∵△OAD是等邊三角形,

ADAOAB4

CDACAD4,

RtCDF中,∠CDF30°

CFCD2,DF2,

連接OE

OBOE,∠B60°

∴△OBE是等邊三角形,

OBBE4

EFBCCFBE8242;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)

1)分別求出y1y2的函數(shù)關(guān)系式(不寫自變量取值范圍);

2)通過計(jì)算說明:哪個(gè)月出售這種蔬菜,每千克的收益最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=,AD=3,點(diǎn)E從點(diǎn)B出發(fā),沿BC邊運(yùn)動(dòng)到點(diǎn)C,連結(jié)DE,點(diǎn)EDE的垂線交AB于點(diǎn)F.在點(diǎn)E的運(yùn)動(dòng)過程中,以EF為邊,在EF上方作等邊△EFG,則邊EG的中點(diǎn)H所經(jīng)過的路徑長是( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,點(diǎn)、分別在上,連接,將沿折疊,使點(diǎn)落在邊上的點(diǎn)處,若有一邊垂直,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,ABACBC2,點(diǎn)DAC邊上一動(dòng)點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線段CE長度的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點(diǎn)B,

點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若ADE

的面積為3,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖,菱形ABCD的對角線ACBD相交于點(diǎn)O,分別延長OAOC到點(diǎn)E,F,使AE=CF,依次連接BF,D,E各點(diǎn).

1)求證:△BAE≌△BCF;

2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從點(diǎn)C出發(fā)沿線段以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為.

1)求的長.

2)當(dāng)時(shí),求t的值

3)試探究:t為何值時(shí),為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對這四門校本課程的喜愛情況,對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計(jì)圖.

請您根據(jù)圖中提供的信息回答下列問題:

1)統(tǒng)計(jì)圖中的a= ,b= ;

2)“D”對應(yīng)扇形的圓心角為 度;

3)根據(jù)調(diào)查結(jié)果,請您估計(jì)該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);

4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機(jī)選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.

查看答案和解析>>

同步練習(xí)冊答案