【題目】如圖,一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于兩點.

(1)求一次函數(shù)的表達式;

(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.

【答案】(1)(2)1或9.

【解析】

試題(1)一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,

由根據(jù)點在曲線上點的坐標滿足方程的關(guān)系,將代入兩解析式聯(lián)立求解即可.

(2)根據(jù)直線平移的性質(zhì)得到平移后的解析式,與反比例函數(shù)解析式聯(lián)立,消去y,得到關(guān)于x的一元二次方程,由二者只有一個公共點知該一元二次方程有兩相等的實數(shù)根,從而根據(jù)根的判別式=0求解即可.

試題解析:(1)一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,

,解得:.

一次函數(shù)為:

(2)將直線向下平移個單位長度后,直線為:

,化為:

Δ=(5-m)2-16=0,解得:m=1或9.

m=1或9.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:函數(shù)是二次函數(shù).

的值;

寫出這個二次函數(shù)圖象的對稱軸:________,頂點坐標:________;

求圖象與軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,DBC邊上一點,EAC邊上一點,且∠ADE=60°.

(1)求證:△ABD∽△DCE;

(2)若BD=3,CE=2,求△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點E,F(xiàn),G,若∠ABC=30°,C=45°,ED=,點HBD上的一個動點,則HG+HC的最小值為______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在邊AC上取一點D,使得BD=CD,點E、F分別是線段BC、BD的中點,連接AFEF,作∠FEM=FDC,交AC于點M,如圖1所示.

(1)請判斷四邊形EFDM是什么特殊的四邊形,并證明你的結(jié)論;

(2)將∠FEM繞點E順時針旋轉(zhuǎn)到∠GEN,交線段AF于點G,交AC于點N,如圖2所示,請證明:EG=EN;

(3)在第(2)條件下,若點GAF中點,且∠C=30°,AB=3,如圖3,求GE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點PBC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結(jié)論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C,D兩點.點Px軸上的一個動點.

(1)求此拋物線的解析式;

(2)當PA+PB的值最小時,求點P的坐標;

(3)拋物線上是否存在一點Q(QB不重合),使CDQ的面積等于BCD的面積?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,王老師布置如下任務:

如圖1,直線MN外一點A,過點A作直線MN的平行線.

(1)小路的作法如下:

MN上任取一點B,作射線BA;

B為圓心任意長為半徑畫弧,分別交BAMNC、D兩點(點D位于BA的左側(cè)),再以A為圓心,相同的長度為半徑畫弧EH,交BA于點E(點E位于點A上方);

③以E為圓心CD的長為半徑畫弧,交弧EH于點FF點位于BA左側(cè))

④作直線AF

⑤直線AF即為所求作平行線.

請你根據(jù)小路同學的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊含的數(shù)學依據(jù):

(2)請你參考小路的作法,利用圖2再設(shè)計一種過點AMN的平行線的尺規(guī)作圖過程(保留作圖痕跡),并說明其中蘊含的數(shù)學依據(jù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABD,△ACE都是等邊三角形,BE,DC相交于點F,連接AF

1)求證:BEDC;

2)求證:AF平分∠DFE

查看答案和解析>>

同步練習冊答案