【題目】小強(qiáng)為了測(cè)量一幢高樓高AB,在旗桿CD與樓之間選定一點(diǎn)P.測(cè)得旗桿頂C視線PC與地面夾角∠DPC=36°,測(cè)樓頂A視線PA與地面夾角∠APB=54°,量得P到樓底距離PB與旗桿高度相等,等于10米,量得旗桿與樓之間距離為DB=36米,小強(qiáng)計(jì)算出了樓高,樓高AB是多少米?

【答案】樓高AB26米.

【解析】

試題分析: 因?yàn)?/span>CPD=36°,APB=54°,CDP=ABP=90°,

所以∠DCP=APB=54°,根據(jù),,判定△CPD≌△PAB,根據(jù)全等三角形的性質(zhì)進(jìn)而得出AB的長(zhǎng).

試題解析:∵∠CPD=36°,APB=54°,CDP=ABP=90°,

∴∠DCP=APB=54°,

在△CPD和△PAB,

,

∴△CPD≌△PAB(ASA),

DP=AB,

DB=36,PB=10,

AB=36﹣10=26(m),

:樓高AB26米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在4×4正方形網(wǎng)格中,有3個(gè)小正方形已經(jīng)涂黑,若再涂黑任意一個(gè)白色的小正方形(每一個(gè)白色的小正方形被涂黑的可能性相同),使新構(gòu)成的黑色部分的圖形是軸對(duì)稱圖形的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,老師出示了如下的題目:如圖(1),在等邊ABC中,點(diǎn)EAB上,點(diǎn)DCB的延長(zhǎng)線上,且ED=EC,試判斷AEBD的大小關(guān)系,并說(shuō)明理由

小敏與同桌小聰討論后,進(jìn)行了如下解答:

(1)特殊情況,探索結(jié)論

當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),如圖(2),確定線段AEDB的大小關(guān)系,請(qǐng)你直接寫(xiě)出結(jié)論:AE DB(填“>”,“<”“=”);

(2)特例啟發(fā),解答題目

如圖(1),試判斷AEBD的大小關(guān)系,并說(shuō)明理由;

(3)拓展結(jié)論,設(shè)計(jì)新題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC;若ABC的邊長(zhǎng)為1,AE=2,請(qǐng)畫(huà)出圖形,求CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B,F,C,E在直線lF,C之間不能直接測(cè)量,點(diǎn)A,Dl異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點(diǎn)C在x軸的負(fù)半軸上,將ABCO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到ADEF,AD經(jīng)過(guò)點(diǎn)O,點(diǎn)F恰好落在x軸的正半軸上,若點(diǎn)D在反比例函數(shù)y= (x<0)的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)D是△ABC所在平面內(nèi)一點(diǎn),連接AD、CD

(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;

(2)如圖2,若存在一點(diǎn)P,使得PB平分∠ABC,同時(shí)PD平分∠ADC,探究∠A,∠P,∠C的關(guān)系并證明;

(3)如圖3,在 (2)的條件下,將點(diǎn)D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)y關(guān)于x的函數(shù)同時(shí)滿足兩個(gè)條件:①圖象過(guò)(2,1)點(diǎn);②當(dāng)x>0時(shí),y隨x的增大而減。@個(gè)函數(shù)解析式為 . (寫(xiě)出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,

(1)①畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1
②畫(huà)出△ABC繞原點(diǎn)O旋轉(zhuǎn)180°后的△A2B2C2 , 并寫(xiě)出A2、B2、C2的坐標(biāo)
(2)假設(shè)每個(gè)正方形網(wǎng)格的邊長(zhǎng)為1,求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時(shí),求BAE的度數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案