精英家教網 > 初中數學 > 題目詳情

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連揍AF,則下列結論不正確的是(    ).

A.CP平分∠BCD          B.四邊形ABED為平行四邊形

C,CQ將直角梯形ABCD分為面積相等的兩部分     D.△ABF為等腰三角形

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連接AF,求證:
(1)CP平分∠BCD;
(2)四邊形ABED為平行四邊形;
(3)△ABF為等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連結AF求證:(1)CP平分∠BCD

(2)四邊形ABED為平行四邊形

(3)△ABF為等腰三角形

(改編)

查看答案和解析>>

科目:初中數學 來源: 題型:

己知直角梯形ABCD中,ADBC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BFDE交于點P.連接CP并延長交AB于點Q,連揍AF,下列四個結論:①CP平分∠BCD;②四邊形ABED為平行四邊形;③CQ將直角梯形ABCD分為面積相等的兩部分;④△ABF為等腰三角形.其中正確的結論個數有      (    )

A.1個          B.2個     C.3個       D.4個

 


查看答案和解析>>

科目:初中數學 來源:2012年中考數學仿真模擬試卷(二)(解析版) 題型:解答題

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連接AF,求證:
(1)CP平分∠BCD;
(2)四邊形ABED為平行四邊形;
(3)△ABF為等腰三角形.

查看答案和解析>>

科目:初中數學 來源:2012年浙江省杭州市中考數學模擬試卷(48)(解析版) 題型:解答題

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連接AF,求證:
(1)CP平分∠BCD;
(2)四邊形ABED為平行四邊形;
(3)△ABF為等腰三角形.

查看答案和解析>>

同步練習冊答案