如圖,在平面直角坐標(biāo)系中,直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)C和點(diǎn)B關(guān)于y軸對稱.
(1)求△ABC內(nèi)切圓的半徑;
(2)過O、A兩點(diǎn)作⊙M,分別交直線AB、AC于點(diǎn)D、E,求證:AD+AE是定值,并求其值.

解:(1)∵直線AB的解解析式為:y=x+1,
∴A(0,1),B(-1,0),
∵點(diǎn)C和點(diǎn)B關(guān)于y軸對稱.
∴點(diǎn)C(1,0),
∴OA=OB=OC=1,
∵△ABC為Rt△,AB=AC=,BC=2,
∴r=,即內(nèi)切圓的半徑為-1.

(2)連接OD,OE,DE.AE,

∵∠BAC=90°,
∴DE為直徑.∴∠DOE=90°.
又∵∠AOB=90°,∴∠DOB=∠AOE.
又∵∠OAE=∠OBD=45°,且OA=OB.
∴△AOE≌△BOD.故AE=BD.
∴AD+AE=AD+BD=AB=
分析:(1)因?yàn)橹本y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)C和點(diǎn)B關(guān)于y軸對稱,所以分別令x=0,y=0,即可求出點(diǎn)A、B的坐標(biāo),由此即可求出OA=OB=OC=1,所以可判斷△ABC為Rt△,并且AB=AC=,BC=2,所以r=,代入相關(guān)數(shù)據(jù)即可求出內(nèi)切圓的半徑r;
(2)因?yàn)檫^O、A兩點(diǎn)作⊙M,分別交直線AB、AC于點(diǎn)D、E,即O、A、D、E四點(diǎn)共圓,所以連接OD,OE、DE,因?yàn)椤螧AC=90°,根據(jù)90度的圓周角對的弦是直徑可得DE為直徑,所以∠DOE=90度.又因∠AOB=90°,利用同角的余角相等可得∠DOB=∠AOE,因?yàn)椤螼AE=∠OBD=45°,且OA=OB,可得△AOE≌△BOD,故AE=BD.所以AD+AE=AD+BD=AB=
點(diǎn)評:本題需仔細(xì)分析題意,結(jié)合圖形,利用圓的性質(zhì)、全等三角形的知識即可解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案