【題目】如圖所示,在△ABC中,∠1=∠2,G是AD的中點,延長BG交AC于點E,F(xiàn)為AB上一點,CF⊥AD交AD于點H.下列說法:①AD是△ABE的角平分線;②BE是△ABD的邊AD上的中線;③CH為△ACD的邊AD上的高;④AH是△ACF的角平分線和高線.其中正確的有_______

【答案】③④

【解析】①根據(jù)三角形的角平分線的概念,AD是△ABC的角平分線故此說法不正確;

②根據(jù)三角形的中線的概念,BG是△ABD的邊AD上的中線故此說法不正確;

③根據(jù)三角形的高的概念CH為△ACD的邊AD上的高,故此說法正確;

④根據(jù)三角形的角平分線和高的概念,AH是△ACF的角平分線和高線,故此說法正確.

故答案為:③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于點D,BD=CD,若BC=5,AD=4,則圖中陰影部分的面積為................... ................... ................... ....... .......... ..... .......... ..... ( )

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知一次函數(shù)y=kx+b(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于點B,且tan∠ABO=3,那么點A的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AD平分∠BAC,DEABE,則下列結(jié)論:①AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB; BE+AC=AB

一定成立的結(jié)論有____________填序號) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,折疊長方形(四個角都是直角)的一邊AD使點D落在BC邊的點F處,已知AB=DC=8cm,AD=BC=10cm,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=BC,∠ABC=120°,將△ABC繞點B逆時針旋轉(zhuǎn)α,其中0°<α<90°得△A1BC1 , A1B交AC與點E,A1C1分別交AC、BC于D、F兩點.
(1)在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊等腰直角三角板△ABC△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)DE的中點,HAE的中點,GBD的中點.

(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FHFG的數(shù)量關(guān)系為______和位置關(guān)系為______;

(2)如圖2,若將三角板△DEC繞著點C順時針旋轉(zhuǎn)至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;

(3)如圖3,將圖1中的△DEC繞點C順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方錯誤的是( )
A.x2+2x﹣99=0化為(x+1)2=100
B.
C.x2+8x+9=0化為(x+4)2=25
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點P0的坐標(biāo)為(),將線段OP0按逆時針方向旋轉(zhuǎn)45°,再將其長度伸長為OP0的2倍,得到線段OP1;又將線段OP1按逆時針方向旋轉(zhuǎn)45°,長度伸長為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)),則點P2017的坐標(biāo)為( )

A. (,) B. (0,22018) C. () D. (22018,0)

查看答案和解析>>

同步練習(xí)冊答案