12、在平面直角坐標系中位于第四象限內的點是( �。�
分析:根據(jù)第四象限點的坐標的特點,依次分析選項,找橫坐標為正,縱坐標為負的點即可.
解答:解:根據(jù)第四象限點的坐標的特點,
分析可得,A (-3,-2)在第三象限,B (-3,2)在第二象限,C (3,2)在第一象限;
只有D( �。�3,-2符合第四象限的特點.故選D.
點評:解決本題的關鍵是記住平面直角坐標系中各個象限內點的符號,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,點A、B、C、P的坐標分別為(0,1)、(-1,0)、(1,0)、(-1,-1).
(1)求經過A、B、C三點的拋物線的表達式;
(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1與△OAB對應線段的比為3:1,請在右圖網格中畫出放大后的△A1B1C1;(所畫△A1B1C1與△ABC在點P同側);
(3)經過A1、B1、C1三點的拋物線能否由(1)中的拋物線平移得到?請說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•畢節(jié)地區(qū))如圖,在平面直角坐標系中,以原點O為位似中心,將△ABO擴大到原來的2倍,得到△A′B′O.若點A的坐標是(1,2),則點A′的坐標是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,三角形的三個頂點分別是A(2,2),B(4,2),C(4,8),以B為位似中心,按相似比為2:1將△ABC縮小為△A′B′C′,則點A′的坐標為
(3,2)或(5,2)
(3,2)或(5,2)
,點C′的坐標為
(4,5)或(4,-1)
(4,5)或(4,-1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關系.
第一步:數(shù)軸上兩點連線的中點表示的數(shù).自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是
1
1
. 再試幾個,我們發(fā)現(xiàn):數(shù)軸上連接兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù).
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)為便于探索,我們在第一象限內取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結論及梯形中位線的性質,我們可以得到點M的坐標是(
x1+x2
2
x1+x2
2
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形時也可以.我們的結論是:平面直角坐標系中連接兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數(shù).
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關系(如圖②)在平面直角坐標系中畫一個平行四邊形ABCD,設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對角線交點Q的坐標可以表示為Q(
x1+x3
2
x1+x3
2
,
y1+y3
2
y1+y3
2
),也可以表示為Q(
x2+x4
2
x2+x4
2
y2+y4
2
y2+y4
2
 ),經過比較,我們可以分別得出關于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的
和相等
和相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,A(0,6),B(4,0),以原點O為位似中心,按位似比1:2將△AOB縮小得到△DOC,則點B的對應點C的坐標為
(2,0)或(-2,0)
(2,0)或(-2,0)

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�