精英家教網 > 初中數學 > 題目詳情
(2008•呼和浩特)如圖,兩幢樓高AB=CD=30m,兩樓間的距離AC=24m,當太陽光線與水平線的夾角為30°時,求甲樓投在乙樓上的影子的高度.(結果精確到0.01,≈1.732,≈1.414)

【答案】分析:如下圖所示,求甲樓投在乙樓上的影子的高度即需求線段CE的長,而要想求出CE,必須要有DE的值.DE現(xiàn)處在一個直角三角形BDE中,且∠DBE=30°,BD=AC=樓間距24米,所以解直角三角形即可.
解答:解:延長MB交CD于E,連接BD.
由于AB=CD=30,
∴NB和BD在同一直線上,
∴∠DBE=∠MBN=30°,
∵四邊形ACDB是矩形,
∴BD=AC=24,
在Rt△BED中tan30°=,
DE=BD•tan30°=24×,
∴CE=30-8≈16.14,
∴投到乙樓影子高度是16.14m.
點評:此題主要考查了我們對正切的理解和應用,解題的關鍵是把實際問題轉化為數學問題,抽象到解直角三角形中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2008•呼和浩特)將圖中的矩形ABCD沿對角線AC剪開,再把△ABC沿著AD方向平移,得到圖2中的△A′B′C′,其中E是A′B′與AC的交點,F(xiàn)是A′C′與CD的交點.在圖中除△ADC與△C′B′A′全等外,還有幾對全等三角形(不添加輔助線和字母)請一一指出,并選擇其中一對證明.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2008•呼和浩特)如圖,已知二次函數圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數的圖象交于A、B兩點,其中A點坐標為(,),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數的圖象交于E點.
(1)求k,m的值及這個二次函數的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《反比例函數》(05)(解析版) 題型:解答題

(2008•呼和浩特)如圖,正方形OABC的面積為4,點O為坐標原點,點B在函數y=(k<0,x<0)的圖象上,點P(m,n)是函數y=(k<0,x<0)的圖象上異于B的任意一點,過點P分別作x軸、y軸的垂線,垂足分別為E,F(xiàn).
(1)設矩形OEPF的面積為S1,試判斷S1是否與點P的位置有關;(不必說明理由)
(2)從矩形OEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為S2,寫出S2與m的函數關系,并標明m的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2008年內蒙古呼和浩特市中考數學試卷(解析版) 題型:解答題

(2008•呼和浩特)如圖,已知二次函數圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數的圖象交于A、B兩點,其中A點坐標為(,),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數的圖象交于E點.
(1)求k,m的值及這個二次函數的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年內蒙古呼和浩特市中考數學試卷(解析版) 題型:解答題

(2008•呼和浩特)如圖,正方形OABC的面積為4,點O為坐標原點,點B在函數y=(k<0,x<0)的圖象上,點P(m,n)是函數y=(k<0,x<0)的圖象上異于B的任意一點,過點P分別作x軸、y軸的垂線,垂足分別為E,F(xiàn).
(1)設矩形OEPF的面積為S1,試判斷S1是否與點P的位置有關;(不必說明理由)
(2)從矩形OEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為S2,寫出S2與m的函數關系,并標明m的取值范圍.

查看答案和解析>>

同步練習冊答案