正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點P3在反比例函數(shù)y= (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為  

 

【答案】

+1,﹣1)

【解析】

試題分析:作P1C⊥y軸于C,P2D⊥x軸于D,P3E⊥x軸于E,P3F⊥P2D于F,設(shè)P1(a,),則CP1=a,OC=,易得Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,則OB1=P1C=A1D=a,所以O(shè)A1=B1C=P2D=﹣a,則P2的坐標為(,﹣a),然后把P2的坐標代入反比例函數(shù)y=,得到a的方程,解方程求出a,得到P2的坐標;設(shè)P3的坐標為(b,),易得Rt△P2P3F≌Rt△A2P3E,則P3E=P3F=DE=,通過OE=OD+DE=2+=b,這樣得到關(guān)于b的方程,解方程求出b,得到P3的坐標.

解:作P1C⊥y軸于C,P2D⊥x軸于D,P3E⊥x軸于E,P3F⊥P2D于F,如圖,

設(shè)P1(a,),則CP1=a,OC=

∵四邊形A1B1P1P2為正方形,

∴Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,

∴OB1=P1C=A1D=a,

∴OA1=B1C=P2D=﹣a,

∴OD=a+﹣a=,

∴P2的坐標為(,﹣a),

把P2的坐標代入y= (x>0),得到(﹣a)?=2,解得a=﹣1(舍)或a=1,

∴P2(2,1),

設(shè)P3的坐標為(b,),

又∵四邊形P2P3A2B2為正方形,

∴Rt△P2P3F≌Rt△A2P3E,

∴P3E=P3F=DE=,

∴OE=OD+DE=2+,

∴2+=b,解得b=1﹣(舍),b=1+,

==﹣1,

∴點P3的坐標為 (+1,﹣1).

故答案為:(+1,﹣1).

考點:反比例函數(shù)綜合題.

點評:本題考查了反比例函數(shù)圖象上點的坐標特點為橫縱坐標之積為定值;也考查了正方形的性質(zhì)和三角形全等的判定與性質(zhì)以及解分式方程的方法.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y=
2
x
 (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點P3在反比例函數(shù)y=
2
x
 (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-反比例函數(shù)的應(yīng)用(帶解析) 題型:填空題

正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點P3在反比例函數(shù)y= (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省金華市東陽市畫水鎮(zhèn)中中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點P3在反比例函數(shù)y= (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省南陽市唐河縣英才學(xué)校中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:填空題

正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點P3在反比例函數(shù)y= (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為   

查看答案和解析>>

同步練習(xí)冊答案