精英家教網 > 初中數學 > 題目詳情

【題目】如圖,F(xiàn)是正方形ABCD的邊CD上的一個動點,BF的垂直平分線交對角線AC于點E,連接BE,F(xiàn)E,則∠EBF的度數是(
A.45°
B.50°
C.60°
D.不確定

【答案】A
【解析】解:如圖所示,過E作HI∥BC,分別交AB、CD于點H、I,則∠BHE=∠EIF=90°,
∵E是BF的垂直平分線EM上的點,
∴EF=EB,
∵E是∠BCD角平分線上一點,
∴E到BC和CD的距離相等,即BH=EI,
Rt△BHE和Rt△EIF中, ,
∴Rt△BHE≌Rt△EIF(HL),
∴∠HBE=∠IEF,
∵∠HBE+∠HEB=90°,
∴∠IEF+∠HEB=90°,
∴∠BEF=90°,
∵BE=EF,
∴∠EBF=∠EFB=45°.
故選:A.
【考點精析】通過靈活運用正方形的性質,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點A,與x軸交于B,C兩點(點C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過點C時,與x軸的另一點為E,其頂點為F,對稱軸與x軸的交點為H.

(1)求a、c的值.
(2)連接OF,試判斷△OEF是否為等腰三角形,并說明理由.
(3)現(xiàn)將一足夠大的三角板的直角頂點Q放在射線AF或射線HF上,一直角邊始終過點E,另一直角邊與y軸相交于點P,是否存在這樣的點Q,使以點P、Q、E為頂點的三角形與△POE全等?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“綜合與實踐”學習活動準備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數個單位長度.
(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(﹣3,0),(0,6).動點P從點O出發(fā),沿x軸正方向以每秒1個單位的速度運動,同時動點C從點B出發(fā),沿射線BO方向以每秒2個單位的速度運動,以CP,CO為鄰邊構造PCOD,在線段OP延長線上取點E,使PE=AO,設點P運動的時間為t秒.

(1)當點C運動到線段OB的中點時,求t的值及點E的坐標;
(2)當點C在線段OB上時,求證:四邊形ADEC為平行四邊形;
(3)在線段PE上取點F,使PF=1,過點F作MN⊥PE,截取FM=2,F(xiàn)N=1,且點M,N分別在一,四象限,在運動過程中,設PCOD的面積為S.
①當點M,N中有一點落在四邊形ADEC的邊上時,求出所有滿足條件的t的值;
②若點M,N中恰好只有一個點落在四邊形ADEC的內部(不包括邊界)時,直接寫出S的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了估計魚塘中成品魚(個體質量在0.5kg及以上,下同)的總質量,先從魚塘中捕撈50條成品魚,稱得它們的質量如表:

質量/kg

0.5

0.6

0.7

1.0

1.2

1.6

1.9

數量/條

1

8

15

18

5

1

2

然后做上記號再放回水庫中,過幾天又捕撈了100條成品魚,發(fā)現(xiàn)其中2條帶有記號.
(1)請根據表中數據補全如圖的直方圖(各組中數據包括左端點不包括右端點).
(2)根據圖中數據分組,估計從魚塘中隨機捕一條成品魚,其質量落在哪一組的可能性最大?
(3)根據圖中數據分組,估計魚塘里質量中等的成品魚,其質量落在哪一組內?
(4)請你用適當的方法估計魚塘中成品魚的總質量(精確到1kg).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把標準紙一次又一次對開,可以得到均相似的“開紙”.現(xiàn)在我們在長為2 、寬為1的矩形紙片中,畫兩個小矩形,使這兩個小矩形的每條邊都與原矩形紙的邊平行,或小矩形的邊在原矩形的邊上,且每個小矩形均與原矩形紙相似,然后將它們剪下,則所剪得的兩個小矩形紙片周長之和的最大值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx(a≠0)的圖象經過點A(1,4),對稱軸是直線x=﹣ ,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結OA,OB,OD,BD.

(1)求該二次函數的解析式;
(2)求點B坐標和坐標平面內使△EOD∽△AOB的點E的坐標;
(3)設點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的 ?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊EF在△ABC的邊BC上,頂點D、G分別在邊AB、AC上,已知BC=6,△ABC的面積為9,則正方形DEFG的面積為

查看答案和解析>>

同步練習冊答案