(2012•孝感)如圖,在塔AB前的平地上選擇一點C,測出看塔頂?shù)难鼋菫?0°,從C點向塔底走100米到達D點,測出看塔頂?shù)难鼋菫?5°,則塔AB的高為( 。
分析:首先根據(jù)題意分析圖形;本題涉及到兩個直角三角形,設AB=x(米),再利用CD=BC-BD=100的關(guān)系,進而可解即可求出答案.
解答:解:在Rt△ABD中,
∵∠ADB=45°,
∴BD=AB.
在Rt△ABC中,
∵∠ACB=30°,
AB
BC
=tan30°=
3
3
,
∴BC=
3
AB.
設AB=x(米),
∵CD=100,
∴BC=x+100.
∴x+100=
3
x
∴x=
100
3
-1
米.
故選D.
點評:本題考查俯角、仰角的定義,要求學生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•孝感)如圖,AB是⊙O的直徑,AM,BN分別切⊙O于點A,B,CD交AM,BN于點D,C,DO平分∠ADC.
(1)求證:CD是⊙O的切線;
(2)若AD=4,BC=9,求⊙O的半徑R.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)如圖,△ABC在平面直角坐標系中第二象限內(nèi),頂點A的坐標是(-2,3),先把△ABC向右平移4個單位得到△A1B1C1,再作△A1B1C1關(guān)于x軸對稱圖形△A2B2C2,則頂點A2的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,若AC=2,則AD的長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)如圖,在菱形ABCD中,∠A=60°,E、F分別是AB,AD的中點,DE、BF相交于點G,連接BD,CG.有下列結(jié)論:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=
3
4
AB2
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點,與y軸交于點C,三個交點的坐標分別為A(-1,0),B(3,0),C(0,3).
(1)求拋物線的解析式及頂點D的坐標;
(2)若P為線段BD上的一個動點,過點P作PM⊥x軸于點M,求四邊形PMAC面積的最大值和此時P點的坐標;
(3)若P為拋物線在第一象限上的一個動點,過點P作PQ∥AC交x軸于點Q.當點P的坐標為
(2,3)
(2,3)
時,四邊形PQAC是平行四邊形;當點P的坐標為
11
4
,
15
16
11
4
,
15
16
時,四邊形PQAC是等腰梯形(直接寫出結(jié)果,不寫求解過程).

查看答案和解析>>

同步練習冊答案