【題目】計算:

1

2

3(x2 y xy) 3(x2 y xy) 4x2 y

4)已知:A 2a2 5ab 3b2 , B 3a2 ab 2b2 ,(2A B) (3A 2B)的值.

【答案】1;(2)-;(3;(4

【解析】

1)根據(jù)有理數(shù)混合運算的法則計算即可;
2)根據(jù)有理數(shù)混合運算的法則計算即可;
3)根據(jù)整式加減混合運算的法則計算即可;
4)把A、B代入(2A+B-3A-2B),再進(jìn)行整式的加減計算即可.

1

=﹣2×12+3×95×3

=﹣24+2715

=﹣12;

2

×(﹣9+8

×

=-;

3)(x2y+xy)﹣3x2yxy)﹣4x2y

x2y+xy3x2y+3xy4x2y

=﹣6x2y+4xy;

4)∵A2a25ab+3b2,B3a2+ab2b2,

∴(2A+B)﹣(3A2B

2A+B3A+2B

=﹣A+3B

=﹣(2a25ab+3b2+33a2+ab2b2

=﹣2a2+5ab3b2+9a2+3ab6b2

=﹣7a2+8ab9b2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊ABCD的中點,BD是對角線,AG∥DBCB的延長線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ABx軸交于點A(1,0),y軸交于點B(0,-2)

(1)求直線AB所對應(yīng)的函數(shù)關(guān)系式;

(2)若直線AB上一點C在第一象限且點C的坐標(biāo)為(a,2),求△BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場計劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:

原進(jìn)價(元/張)

零售價(元/張)

成套售價(元/套)

餐桌

a

270

500

餐椅

a﹣110

70

已知用600元購進(jìn)的餐桌數(shù)量與用160元購進(jìn)的餐椅數(shù)量相同.

(1)求表中a的值;

(2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進(jìn)貨,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,ADBC邊上的高,點EAC邊的中點,點PAD上的一個動點,當(dāng)PC+PE最小時,∠CPE的度數(shù)是(

A.30°B.45°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB在數(shù)軸上對應(yīng)的數(shù)分別是a,b,且

1)求AB的長;

2)點C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x-1x+2的解,在數(shù)軸上是否存在點P,使PA+PBPC,若存在,直接寫出點P對應(yīng)的數(shù);若不存在,說明理由;

3)在(2)的條件下,若PA左側(cè)的點,現(xiàn)點P、點A以每秒6個單位長度的速度向右勻速運動,同時點B、點C以每秒2個單位長度的速度向左勻速運動,是否存在t的值,使PC的距離是AB的距離的兩倍?若存在,求出t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)校團(tuán)委開展“關(guān)愛殘疾兒童”愛心捐書活動,全校師生踴躍捐贈各類書籍共6000本.為了解各類書籍的分布情況,從中隨機(jī)抽取了部分書籍分四類進(jìn)行統(tǒng)計:A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
1)這次統(tǒng)計共抽取了200____本書籍,扇形統(tǒng)計圖中的m=40____,∠α的度數(shù)是___
2)請將條形統(tǒng)計圖補(bǔ)充完整;
3)估計全校師生共捐贈了多少本文學(xué)類書籍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCD的邊AB上的動點,EFDEBC于點F.

(1)求證:ADEBEF.

(2)設(shè)正方形的邊長為4,AE=x,BF=y.當(dāng)x取什么值時,y有最大值?并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長方形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,已知AB8cm,BC10cm,則折痕AE的長為(

A.cmB. cmC.12cmD.13 cm

查看答案和解析>>

同步練習(xí)冊答案